
Mathematics All Around (6th Edition)
6th Edition
ISBN: 9780134434681
Author: Tom Pirnot
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5.1, Problem 10E
Perform each of the following addition problems using Egyptian notation:
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
-xx0.
B2 If Xfx(x) find the MGF in the case that
fx(x) =
-
1
28
exp{-|x − a\/ẞ},
Use the MGF to compute E(X) and Var(X).
Name
Assume there is the following simplified grade book:
Homework Labs | Final Exam | Project
Avery
95
98
90
100
Blake
90
96
Carlos
83
79
Dax
55
30
228
92
95
79
90
65
60
Assume that the weights used to compute the final grades are homework 0.3, labs 0.2,
the final 0.35, and the project 0.15.
| Write an explicit formula to compute Avery's final grade using a single
inner product.
Write an explicit formula to compute everyone's final grade simultane-
ously using a single matrix-vector product.
1. Explicitly compute by hand (with work shown) the following Frobenius inner
products
00
4.56 3.12
(a) ((º º º). (156
(b)
10.9
-1
0
2)),
Fro
5')) Fro
Chapter 5 Solutions
Mathematics All Around (6th Edition)
Ch. 5.1 - Write the Egyptian numerals using Hindu-Arabic...Ch. 5.1 - Write the Egyptian numerals using Hindu-Arabic...Ch. 5.1 - Prob. 3ECh. 5.1 - Write the Egyptian numerals using Hindu-Arabic...Ch. 5.1 - Write each Hindu-Arabic numeral using Egyptian...Ch. 5.1 - Write each Hindu-Arabic numeral using Egyptian...Ch. 5.1 - Prob. 7ECh. 5.1 - Write each Hindu-Arabic numeral using Egyptian...Ch. 5.1 - Prob. 9ECh. 5.1 - Perform each of the following addition problems...
Ch. 5.1 - Prob. 11ECh. 5.1 - Perform each of the following addition problems...Ch. 5.1 - Perform each of the following subtraction problems...Ch. 5.1 - Perform each of the following subtraction problems...Ch. 5.1 - Perform each of the following subtraction problems...Ch. 5.1 - Perform each of the following subtraction problems...Ch. 5.1 - Prob. 17ECh. 5.1 - Use the Egyptian method of doubling to calculate...Ch. 5.1 - Prob. 19ECh. 5.1 - Use the Egyptian method of doubling to calculate...Ch. 5.1 - Prob. 21ECh. 5.1 - Write each Roman numeral using Hindu-Arabic...Ch. 5.1 - Write each Roman numeral using Hindu-Arabic...Ch. 5.1 - Write each Roman numeral using Hindu-Arabic...Ch. 5.1 - Write each Roman numeral using Hindu-Arabic...Ch. 5.1 - Write each Roman numeral using Hindu-Arabic...Ch. 5.1 - Write each Roman numeral using Hindu-Arabic...Ch. 5.1 - Write each Roman numeral using Hindu-Arabic...Ch. 5.1 - Write each Roman numeral using Hindu-Arabic...Ch. 5.1 - Write each Roman numeral using Hindu-Arabic...Ch. 5.1 - Prob. 31ECh. 5.1 - Write each numeral in Roman notation There may be...Ch. 5.1 - Prob. 33ECh. 5.1 - Write each numeral in Roman notation There may be...Ch. 5.1 - Prob. 35ECh. 5.1 - Write each numeral in Roman notation There may be...Ch. 5.1 - Prob. 37ECh. 5.1 - Write each numeral in Roman notation There may be...Ch. 5.1 - Write each Chinese numeral as a Hindu-Arabic...Ch. 5.1 - Write each Chinese numeral as a Hindu-Arabic...Ch. 5.1 - Write each Chinese numeral as a Hindu-Arabic...Ch. 5.1 - Write each Chinese numeral as a Hindu-Arabic...Ch. 5.1 - Write each Chinese numeral as a Hindu-Arabic...Ch. 5.1 - Write each Chinese numeral as a Hindu-Arabic...Ch. 5.1 - Write each numeral using Chinese numerals. 495Ch. 5.1 - Write each numeral using Chinese numerals. 726Ch. 5.1 - Write each numeral using Chinese numerals. 2,805Ch. 5.1 - Write each numeral using Chinese numerals. 3,926Ch. 5.1 - Write each numeral using Chinese numerals. 9,846Ch. 5.1 - Write each numeral using Chinese numerals. 8,054Ch. 5.1 - The Great Pyramid at Giza was completed in . Write...Ch. 5.1 - Cheops, the builder of the Great Pyramid at Giza,...Ch. 5.1 - An Egyptian merchant has a warehouse that contains...Ch. 5.1 - An ancient Egyptian merchant had on hand bushels...Ch. 5.1 - Using Egyptian notation, the number 100,...Ch. 5.1 - Using Egyptian notation, the number 100,...Ch. 5.1 - Using Egyptian notation, the number 100,...Ch. 5.1 - Using Egyptian notation, the number 100,...Ch. 5.1 - The emperor Aurelius Constantine, who lived from...Ch. 5.1 - By 285ad, the Roman Empire had become so vast that...Ch. 5.1 - Frequently, Roman numerals are used today in movie...Ch. 5.1 - Prob. 62ECh. 5.1 - Prob. 63ECh. 5.1 - Frequently, Roman numerals are used today in movie...Ch. 5.1 - The counting boards In Exercises 6568 show...Ch. 5.1 - The counting boards In Exercises 6568 show...Ch. 5.1 - The counting boards In Exercises 6568 show...Ch. 5.1 - The counting boards In Exercises 6568 show...Ch. 5.1 - The oldest discovery of Chinese written numerals...Ch. 5.1 - When Marco Polo visited China in 1274, he was...Ch. 5.1 - Explain two advantages of the Roman numeration...Ch. 5.1 - The Roman numeration system has symbols for 5,50,...Ch. 5.1 - The traditional Chinese numeration system had no...Ch. 5.1 - Research the Ionic Greek numeration system, which...Ch. 5.1 - In the Egyptian numeration system, whenever we...Ch. 5.1 - Suppose that Egyptian numeration was based on 5...Ch. 5.1 - Invent an Egyptian type of numeration system using...Ch. 5.1 - Write the number 1,999 in Roman numerals in as...Ch. 5.1 - Egyptian mathematics had a unique way of writing...Ch. 5.1 - Egyptian mathematics had a unique way of writing...Ch. 5.1 - Egyptian mathematics had a unique way of writing...Ch. 5.1 - Egyptian mathematics had a unique way of writing...Ch. 5.2 - Write the following Babylonian numerals as...Ch. 5.2 - Write the following Babylonian numerals as...Ch. 5.2 - Write the following Babylonian numerals as...Ch. 5.2 - Write the following Babylonian numerals as...Ch. 5.2 - Write each number using Babylonian notation. 8,235Ch. 5.2 - Write each number using Babylonian notation. 7,331Ch. 5.2 - Write each number using Babylonian notation....Ch. 5.2 - Write each number using Babylonian notation....Ch. 5.2 - Write each number using Babylonian notation....Ch. 5.2 - Write each number using Babylonian notation....Ch. 5.2 - Write each number using Babylonian notation....Ch. 5.2 - Write each number using Babylonian notation....Ch. 5.2 - Translate each of the following Mayan numerals to...Ch. 5.2 - Translate each of the following Mayan numerals to...Ch. 5.2 - Translate each of the following Mayan numerals to...Ch. 5.2 - Translate each of the following Mayan numerals to...Ch. 5.2 - Write each number using Mayan notation. 17Ch. 5.2 - Write each number using Mayan notation. 48Ch. 5.2 - Prob. 19ECh. 5.2 - Prob. 20ECh. 5.2 - Prob. 21ECh. 5.2 - Prob. 22ECh. 5.2 - Prob. 23ECh. 5.2 - Prob. 24ECh. 5.2 - Prob. 25ECh. 5.2 - Prob. 26ECh. 5.2 - Prob. 27ECh. 5.2 - Prob. 28ECh. 5.2 - Prob. 29ECh. 5.2 - Prob. 30ECh. 5.2 - Prob. 31ECh. 5.2 - Prob. 32ECh. 5.2 - Prob. 33ECh. 5.2 - Prob. 34ECh. 5.2 - Prob. 35ECh. 5.2 - Prob. 36ECh. 5.2 - Prob. 37ECh. 5.2 - Prob. 38ECh. 5.2 - Prob. 39ECh. 5.2 - Prob. 40ECh. 5.2 - Prob. 41ECh. 5.2 - Prob. 42ECh. 5.2 - Prob. 43ECh. 5.2 - Prob. 44ECh. 5.2 - Prob. 45ECh. 5.2 - Prob. 46ECh. 5.2 - Prob. 47ECh. 5.2 - Prob. 48ECh. 5.2 - Prob. 49ECh. 5.2 - Prob. 50ECh. 5.2 - Prob. 51ECh. 5.2 - Prob. 52ECh. 5.2 - Prob. 53ECh. 5.2 - Prob. 54ECh. 5.2 - Prob. 55ECh. 5.2 - Prob. 56ECh. 5.2 - Prob. 57ECh. 5.2 - Prob. 58ECh. 5.2 - Prob. 59ECh. 5.2 - Prob. 60ECh. 5.2 - Prob. 61ECh. 5.2 - Prob. 62ECh. 5.2 - Prob. 63ECh. 5.2 - Prob. 64ECh. 5.2 - Prob. 65ECh. 5.2 - Prob. 66ECh. 5.2 - Prob. 67ECh. 5.2 - Prob. 68ECh. 5.2 - Prob. 69ECh. 5.2 - Prob. 70ECh. 5.2 - Prob. 71ECh. 5.2 - Prob. 72ECh. 5.2 - Prob. 73ECh. 5.2 - Prob. 74ECh. 5.2 - Prob. 75ECh. 5.2 - Prob. 76ECh. 5.2 - Prob. 77ECh. 5.2 - Prob. 78ECh. 5.2 - Prob. 79ECh. 5.2 - Prob. 80ECh. 5.3 - Prob. 1ECh. 5.3 - Prob. 2ECh. 5.3 - Prob. 3ECh. 5.3 - Prob. 4ECh. 5.3 - Prob. 5ECh. 5.3 - Prob. 6ECh. 5.3 - Prob. 7ECh. 5.3 - Prob. 8ECh. 5.3 - Prob. 9ECh. 5.3 - Prob. 10ECh. 5.3 - Prob. 11ECh. 5.3 - Prob. 12ECh. 5.3 - Prob. 13ECh. 5.3 - Prob. 14ECh. 5.3 - Prob. 15ECh. 5.3 - Prob. 16ECh. 5.3 - Prob. 17ECh. 5.3 - Prob. 18ECh. 5.3 - Prob. 19ECh. 5.3 - Prob. 20ECh. 5.3 - Prob. 21ECh. 5.3 - Prob. 22ECh. 5.3 - Prob. 23ECh. 5.3 - Prob. 24ECh. 5.3 - Prob. 25ECh. 5.3 - Prob. 26ECh. 5.3 - Prob. 27ECh. 5.3 - Prob. 28ECh. 5.3 - Prob. 29ECh. 5.3 - Prob. 30ECh. 5.3 - Prob. 31ECh. 5.3 - Prob. 32ECh. 5.3 - Prob. 33ECh. 5.3 - Prob. 34ECh. 5.3 - Prob. 35ECh. 5.3 - Prob. 36ECh. 5.3 - Prob. 37ECh. 5.3 - Prob. 38ECh. 5.3 - Prob. 39ECh. 5.3 - Prob. 40ECh. 5.3 - Prob. 41ECh. 5.3 - Prob. 42ECh. 5.3 - Prob. 43ECh. 5.3 - Prob. 44ECh. 5.3 - Prob. 45ECh. 5.3 - Prob. 46ECh. 5.3 - Prob. 47ECh. 5.3 - Prob. 48ECh. 5.3 - Prob. 49ECh. 5.3 - Prob. 50ECh. 5.3 - Prob. 51ECh. 5.3 - Prob. 52ECh. 5.3 - Prob. 53ECh. 5.3 - Prob. 54ECh. 5.3 - Prob. 55ECh. 5.3 - Prob. 56ECh. 5.3 - Prob. 57ECh. 5.3 - Prob. 58ECh. 5.3 - Prob. 59ECh. 5.3 - Prob. 60ECh. 5.3 - Prob. 61ECh. 5.3 - Prob. 62ECh. 5.3 - Prob. 63ECh. 5.3 - Prob. 64ECh. 5.3 - Prob. 65ECh. 5.3 - Prob. 66ECh. 5.3 - Prob. 67ECh. 5.3 - Prob. 68ECh. 5.3 - Prob. 69ECh. 5.3 - Prob. 70ECh. 5.3 - Prob. 71ECh. 5.3 - Prob. 72ECh. 5.3 - Prob. 73ECh. 5.3 - Prob. 74ECh. 5.3 - Prob. 75ECh. 5.3 - Prob. 76ECh. 5.3 - Prob. 77ECh. 5.3 - Prob. 78ECh. 5.3 - Prob. 79ECh. 5.3 - Prob. 80ECh. 5.3 - Prob. 81ECh. 5.3 - Prob. 82ECh. 5.3 - Prob. 83ECh. 5.3 - Prob. 84ECh. 5.3 - Prob. 85ECh. 5.3 - Prob. 86ECh. 5.3 - Prob. 87ECh. 5.3 - Prob. 88ECh. 5.3 - Prob. 89ECh. 5.3 - Prob. 90ECh. 5.3 - Prob. 91ECh. 5.3 - Prob. 92ECh. 5.3 - Prob. 93ECh. 5.3 - Prob. 94ECh. 5.3 - Prob. 95ECh. 5.3 - Prob. 96ECh. 5.3 - Prob. 97ECh. 5.3 - Prob. 98ECh. 5.3 - Prob. 99ECh. 5.3 - Prob. 100ECh. 5.3 - Prob. 101ECh. 5.3 - Prob. 102ECh. 5.4 - Prob. 1ECh. 5.4 - Prob. 2ECh. 5.4 - Prob. 3ECh. 5.4 - Prob. 4ECh. 5.4 - Prob. 5ECh. 5.4 - Prob. 6ECh. 5.4 - Prob. 7ECh. 5.4 - Prob. 8ECh. 5.4 - Prob. 9ECh. 5.4 - Prob. 10ECh. 5.4 - Prob. 11ECh. 5.4 - Prob. 12ECh. 5.4 - Prob. 13ECh. 5.4 - Prob. 14ECh. 5.4 - Prob. 15ECh. 5.4 - Prob. 16ECh. 5.4 - Prob. 17ECh. 5.4 - Prob. 18ECh. 5.4 - Prob. 19ECh. 5.4 - Prob. 20ECh. 5.4 - Prob. 21ECh. 5.4 - Prob. 22ECh. 5.4 - Prob. 23ECh. 5.4 - Prob. 24ECh. 5.4 - Prob. 25ECh. 5.4 - Prob. 26ECh. 5.4 - Prob. 27ECh. 5.4 - Prob. 28ECh. 5.4 - Prob. 29ECh. 5.4 - Prob. 30ECh. 5.4 - Prob. 31ECh. 5.4 - Prob. 32ECh. 5.4 - Prob. 33ECh. 5.4 - Prob. 34ECh. 5.4 - Prob. 35ECh. 5.4 - Prob. 36ECh. 5.4 - Prob. 37ECh. 5.4 - Prob. 38ECh. 5.4 - Prob. 39ECh. 5.4 - Prob. 40ECh. 5.4 - Prob. 41ECh. 5.4 - Prob. 42ECh. 5.4 - Prob. 43ECh. 5.4 - Prob. 44ECh. 5.4 - Prob. 45ECh. 5.4 - Prob. 46ECh. 5.4 - Prob. 47ECh. 5.4 - Prob. 48ECh. 5.4 - Prob. 49ECh. 5.4 - Prob. 50ECh. 5.4 - Prob. 51ECh. 5.4 - Prob. 52ECh. 5.4 - Prob. 53ECh. 5.4 - Prob. 54ECh. 5.4 - Prob. 55ECh. 5.4 - Prob. 56ECh. 5.4 - a. Why are check digits important? Give an...Ch. 5.4 - Prob. 58ECh. 5.4 - Prob. 59ECh. 5.4 - Prob. 60ECh. 5.4 - Prob. 61ECh. 5.4 - Prob. 62ECh. 5.4 - Prob. 63ECh. 5.4 - Challenge Yourself When we do usual division of...Ch. 5.4 - Prob. 65ECh. 5.CR - Prob. 1CRCh. 5.CR - Prob. 2CRCh. 5.CR - Prob. 3CRCh. 5.CR - Prob. 4CRCh. 5.CR - Prob. 5CRCh. 5.CR - Prob. 6CRCh. 5.CR - Prob. 7CRCh. 5.CR - Prob. 8CRCh. 5.CR - Prob. 9CRCh. 5.CR - Prob. 10CRCh. 5.CR - Prob. 11CRCh. 5.CR - Prob. 12CRCh. 5.CR - Prob. 13CRCh. 5.CR - Prob. 14CRCh. 5.CR - Prob. 15CRCh. 5.CR - Prob. 16CRCh. 5.CR - Prob. 17CRCh. 5.CR - Prob. 18CRCh. 5.CR - Prob. 19CRCh. 5.CR - Prob. 20CRCh. 5.CR - Prob. 21CRCh. 5.CR - Prob. 22CRCh. 5.CR - Prob. 23CRCh. 5.CT - Write 3,685 in Roman notation.Ch. 5.CT - Prob. 2CTCh. 5.CT - Write 2647 and A3E16 as base-10 numerals.Ch. 5.CT - Prob. 4CTCh. 5.CT - Prob. 5CTCh. 5.CT - Prob. 6CTCh. 5.CT - Prob. 7CTCh. 5.CT - Prob. 8CTCh. 5.CT - Prob. 9CTCh. 5.CT - Prob. 10CTCh. 5.CT - Prob. 11CTCh. 5.CT - Prob. 12CTCh. 5.CT - Prob. 13CTCh. 5.CT - Prob. 14CTCh. 5.CT - Prob. 15CTCh. 5.CT - Prob. 16CTCh. 5.CT - Prob. 17CTCh. 5.CT - Prob. 18CTCh. 5.CT - Prob. 19CTCh. 5.CT - Prob. 20CTCh. 5.CT - Prob. 21CTCh. 5.CT - Prob. 22CT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 3. Let 4 0 0 00 0 0 1.2 0 00 0 0 0 -10.1 0 0 0 D = 0 0 0 00 0 0 0 0 05 0 0 0 0 0 0 2.8 Either explicitly compute D-¹ or explain why it doesn't exist.arrow_forward4. [9 points] Assume that B, C, E are all 3 x 3 matrices such that BC == -64 -1 0 3 4 4 4 -2 2 CB=-1-2 4 BE -2 1 3 EC = 1 3 2 -7, 1 6 -6 2-5 -7 -2 Explicitly compute the following by hand. (I.e., write out the entries of the 3 × 3 matrix.) (a) [3 points] B(E+C) (b) [3 points] (E+B)C (c) [3 points] ETBTarrow_forward6. Consider the matrices G = 0 (3) -3\ -3 2 and H = -1 2 0 5 0 5 5 noting that H(:, 3) = 2H(:,1) + H(:, 2). Is G invertible? Explain your answer. Is H invertible? Explain your answer. Use co-factor expansion to find the determinant of H. (Hint: expand the 2nd or 3rd row)arrow_forward
- B3 Consider X ~ Bern(p) (a) Find Mx(t), the moment generating function of X. iid (b) If X1,..., Xn Bern(p), find the MGF, say My (t) of n Y = ΣΧ (c) Using the fact that i=1 n lim (1 (1+2)"= N→X = e² find limn→∞ My (t) in the case that p satisfies limn→∞ np = λ, say. (d) State the distribution of Y in the case that n is not large, and the distribution of Y in the limiting case described in the question.arrow_forwardB1 The density of the x2 distribution is given in the notes as 1 F(§)2/2 (x)=()2/21 x/2-1/2, if x > 0, and e where I(t)=√xt-¹e dx is the gamma function. otherwise, Find the point at which o(a) has its maximum, i.e. find arg max, o, (x)arrow_forwardFor the matrix A = = ( 6 }) . explicitly compute by hand (with work shown) the following. I2A, where I2 is the 2 × 2 identity matrix. A-1 solving the following linear systems by using A-¹: c+y= 1 y = 1 (d) (e) (f) A² find the diagonal entries of Aarrow_forward
- If 3x−y=12, what is the value of 8x / 2y A) 212B) 44C) 82D) The value cannot be determined from the information given.arrow_forwardC=59(F−32) The equation above shows how temperature F, measured in degrees Fahrenheit, relates to a temperature C, measured in degrees Celsius. Based on the equation, which of the following must be true? A temperature increase of 1 degree Fahrenheit is equivalent to a temperature increase of 59 degree Celsius. A temperature increase of 1 degree Celsius is equivalent to a temperature increase of 1.8 degrees Fahrenheit. A temperature increase of 59 degree Fahrenheit is equivalent to a temperature increase of 1 degree Celsius. A) I onlyB) II onlyC) III onlyD) I and II onlyarrow_forwardplease answer the questions below ands provide the required codes in PYTHON. alsp provide explanation of how the codes were executed. Also make sure you provide codes that will be able to run even with different parameters as long as the output will be the same with any parameters given. these questions are not graded. provide accurate codes pleasearrow_forward
- (1) Let F be a field, show that the vector space F,NEZ* be a finite dimension. (2) Let P2(x) be the vector space of polynomial of degree equal or less than two and M={a+bx+cx²/a,b,cЄ R,a+b=c),show that whether Mis hyperspace or not. (3) Let A and B be a subset of a vector space such that ACB, show that whether: (a) if A is convex then B is convex or not. (b) if B is convex then A is convex or not. (4) Let R be a field of real numbers and X=R, X is a vector space over R show that by definition the norms/II.II, and II.112 on X are equivalent where Ilxll₁ = max(lx,l, i=1,2,...,n) and llxll₂=(x²). oper (5) Let Ⓡ be a field of real numbers, Ⓡis a normed space under usual operations and norm, let E=(2,5,8), find int(E), b(E) and D(E). (6) Write the definition of bounded linear function between two normed spaces and write with prove the relation between continuous and bounded linear function between two normed spaces.arrow_forwardind → 6 Q₁/(a) Let R be a field of real numbers and X-P(x)=(a+bx+cx²+dx/ a,b,c,dER},X is a vector space over R, show that is finite dimension. (b) Let be a bijective linear function from a finite dimension vector ✓ into a space Yand Sbe a basis for X, show that whether f(S) basis for or not. (c) Let be a vector space over a field F and A,B)affine subsets of X,show that whether aAn BB, aAU BB be affine subsets of X or not, a,ẞ EF. (12 Jal (answer only two) (6) Let M be a non-empty subset of a vector space X and tEX, show that M is a hyperspace of X iff t+M is a hyperplane of X and tЄt+M. (b) State Jahn-Banach theorem and write with prove an application of Hahn-arrow_forward(b) Let A and B be two subset of a linear space X such that ACB, show that whether if A is affine set then B affine or need not and if B affine set then A affine set or need not. Qz/antonly be a-Show that every hyperspace of a vecor space X is hyperplane but the convers need not to be true. b- Let M be a finite dimension subspace of a Banach space X show that M is closed set. c-Show that every two norms on finite dimension vector space are equivant (1) Q/answer only two a-Write the definition of bounded set in: a normed space and write with prove an equivalent statement to a definition. b- Let f be a function from a normed space X into a normed space Y, show that f continuous iff f is bounded. c-Show that every finite dimension normed space is a Banach. Q/a- Let A and B two open sets in a normed space X, show that by definition AnB and AUB are open sets. (1 nood truearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Trigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellIntermediate AlgebraAlgebraISBN:9781285195728Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning

Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell

Intermediate Algebra
Algebra
ISBN:9781285195728
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning

Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
ALGEBRAIC EXPRESSIONS & EQUATIONS | GRADE 6; Author: SheenaDoria;https://www.youtube.com/watch?v=fUOdon3y1hU;License: Standard YouTube License, CC-BY
Algebraic Expression And Manipulation For O Level; Author: Maths Solution;https://www.youtube.com/watch?v=MhTyodgnzNM;License: Standard YouTube License, CC-BY
Algebra for Beginners | Basics of Algebra; Author: Geek's Lesson;https://www.youtube.com/watch?v=PVoTRu3p6ug;License: Standard YouTube License, CC-BY
Introduction to Algebra | Algebra for Beginners | Math | LetsTute; Author: Let'stute;https://www.youtube.com/watch?v=VqfeXMinM0U;License: Standard YouTube License, CC-BY