Structural Analysis, SI Edition
6th Edition
ISBN: 9780357030981
Author: Aslam Kassimali
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 9P
To determine
Find the axial force, shear, and bending moment at points A and B of the beam.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
4.5m 4.5m 4.5m
20
4m
A- Intermediate flat plate
floor, story height=2.75
m, t=190 mm, f'c=20
MPa for slabs and f'c=35
MPa for columns. All
columns
are
400×400mm. Find all DF
for
the
interior
equivalent frame shown.
6m
6m
2. Determine the reactions, and shear and moment diagrams. EI= 50000 kip-ft2[50pts]
Note: You can use the virtual work method/ Table to calculate fij terms.
A
18 ft
B
40 k
6 ft
C
based on the gantt chart shown what is the most appropriate next step to prevent project delay?
A) Shift non-critical tasks to make room for Task B
B) Reassign the graming worrk to a different subcontractor immediately.
C) Extend the project deadline by one week
D)Analyze float in adjacent task and consider crashing task B
Chapter 5 Solutions
Structural Analysis, SI Edition
Ch. 5 - Prob. 1PCh. 5 - Prob. 2PCh. 5 - Prob. 3PCh. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - Prob. 6PCh. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - Prob. 9PCh. 5 - Prob. 10P
Ch. 5 - Prob. 11PCh. 5 - Determine the equations for shear and bending...Ch. 5 - Determine the equations for shear and bending...Ch. 5 - Determine the equations for shear and bending...Ch. 5 - Determine the equations for shear and bending...Ch. 5 - Determine the equations for shear and bending...Ch. 5 - Determine the equations for shear and bending...Ch. 5 - Determine the equations for shear and bending...Ch. 5 - 5.12 through 5.28 Determine the equations for...Ch. 5 - 5.12 through 5.28 Determine the equations for...Ch. 5 - 5.12 through 5.28 Determine the equations for...Ch. 5 - 5.12 through 5.28 Determine the equations for...Ch. 5 - 5.12 through 5.28 Determine the equations for...Ch. 5 - 5.12 through 5.28 Determine the equations for...Ch. 5 - 5.12 through 5.28 Determine the equations for...Ch. 5 - 5.12 through 5.28 Determine the equations for...Ch. 5 - 5.12 through 5.28 Determine the equations for...Ch. 5 - 5.12 through 5.28 Determine the equations for...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - 5.29 through 5.51 Draw the shear and bending...Ch. 5 - Draw the shear and bending moment diagrams for the...Ch. 5 - For the beam shown: (a) determine the distance a...Ch. 5 - For the beam shown: (a) determine the distance a...Ch. 5 - Prob. 55PCh. 5 - Prob. 56PCh. 5 - Prob. 57PCh. 5 - Prob. 58PCh. 5 - Prob. 59PCh. 5 - Prob. 60PCh. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Prob. 63PCh. 5 - Prob. 64PCh. 5 - Prob. 65PCh. 5 - Prob. 66PCh. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - Prob. 70PCh. 5 - Prob. 71P
Knowledge Booster
Similar questions
- According to the site safety layout what is the biggest potential safety risk? A) PPE Station Located too lose to a heavy equipment zone B) Emergency assemlt point is near the parking lot C)Fire Extingishers are placed every 50 ft. D) Only one site entrance is open for deliveriesarrow_forwardwhich method is most effective for controlling costs and tracking budget performance during a construction project? A)SWOT Analysis B)Root Cause Analysis C)Gantt Chart D) Value Stream Mappingarrow_forward9.44 High-speed passenger trains are streamlined to reduce shear force. The cross section of a passenger car of one such train is shown. For a train 81 m long, estimate the shear force (a) for a speed of 81.1 km/hr and (b) for one of 204 km/hr. What power is required for just the shear force at these speeds? These two power calculations will be answers (c) and (d), respectively. Assume T = 10°C and that the boundary layer is tripped at the front of the train. 10 m Problem 9.44arrow_forward
- A monitoring program for water flow in an unsaturated soil layer includes sensors to measure the volumetric water content and suction up to a depth of 3 m. The soil is a sand whose hydraulic properties are shown in the figures below. Using the drying curves, draw a quantitatively accurate set of vertical profiles of volumetric water content, pressure head, and total hydraulic head versus depth (with a datum at the base of the soil layer and an elevation head that is positive upward) expected for the following cases:A) The volumetric water content (moisture content) is 10% throughout the profile B) The pressure head is -150 cm throughout the profile C) The total hydraulic head is 100 cm throughout the profile (static no-flow case) Also, report the hydraulic gradient for each case. For parts (a) and (b), calculate the flow rates through the profile. For part (c), calculate the depth to the water table.arrow_forward9.16 Two vertical parallel plates are spaced 0.012 ft apart. If the pressure decreases at a rate of 100 psf/ft in the vertical z direction in the fluid between the plates, what is the maximum fluid velocity in the Z direction? The fluid has a viscosity of 10-3 Ibf s/ft² and a specific gravity of 0.80. .arrow_forwardPlease explain steps using software.arrow_forward
- Please explain steps for using softwarearrow_forwardDesign the reinforced masonry beam in the wall shown below. The wall is to be constructed of fully grouted hollow concrete masonry units in running bond. It is to carry its own weight plus a superimposed dead load of 2.5 kips/ft and a live load of 0.8 kip/ft. Determine the width of the masonry units (by trials), and the amounts of the longitudinal and shear reinforcement required using the strength design method of TMS 402-22. Show the layout of the reinforcements with diagrams. Use fm = 2,000 psi, Grade 60(60 ksi) steel, and Type S Portland cement mortar. Assume that the centroid of the bottom rebar is 3 inches from the bottom face of the beam. ( you may assume that the unit weight of fully grouted concrete masonry is 125 lbs per cubic foot.)arrow_forward6. The easiest method to solve the beam shown in question number 14 is A. Force method B. Slope deflection method C. Moment distribution method D. Virtual work method E. Stiffness matrix method 17. The value of 8 caused by applying CW moment at A equal to 18. A. ML/2E1 B. ML/3E1 C. ML/4E1 D. ML/6EI E. None of the above For the beam shown below, the moment at A kN.m CCW. Assume P= 8 kN equals to ........ A. 20 B. 22.5 C. 25 D. 27.5 E. 30 M L A unlocked joint end pin P P P B A 1m 1m 2m 2m 19. The analysis of indeterminate non sway frames using moment distribution method does not need..... A. Finding stiffness factors of members B. Finding fix end moments C. Using compatibility equations D. Removing redundants E. Cand D 0. The frame shown is kinematically 6 kN/m indeterminate to ................ degree. A, C and D are fixed. E and B are pinned. A. First B. Second C. Third D. Fourth E. None of the above 6 m Sm 7 marrow_forward
- 1. The moment at A using slope deflection method equals to 10 kN ..... kN. m CCW. A. 2.5 B. 5 C. 7.5 D. 10 E. None of the above 2m 2m B 10 kN + 2m + 2m 2. To solve the beam shown using slope deflection method,. ...... unknowns (s) 25 kN 15 kN/m should be selected. A. One B. Two fix C. Three D. Four E. None of the above magnitude of the rotation at B for the me shown using slope deflection method quals to El constant. A. -162/EI B. -162 El C. 40/El D. -40 El E. 0.3 radian B A 3 m 3 m -4 m- 4k/ft roller A fix 18 ft. To solve the beam shown using slope deflection method, should be fix selected as equilibrium equation (s). A. MAB+MBA = 0 B. MAB + MBA 0 and MBC=0 C. MBA+MBC = 0 D. MBA+MBC = 0 and MCB=0 E. None of the above B fix fix 9ft 20 kN/m 80 EN pin 9 m 3 m rollerarrow_forwardSolvearrow_forward5. The number of unknowns for the frame shown using slope deflection method is... Assume A, B and D are fixed and interior hinge at C A. Two B. Four C. Six D. Eight E. None of the above 10 kN B Qc 4m A 3m + + 3m 3m 6. 7. The slope-deflection method was originally developed by Heinrich Manderla and Otto Mohr for the purpose of studying. A. secondary stresses in trusses B. secondary stresses in beams and frames C. Indeterminate beams and frames analysis D. Determinate beams and frames analysis E. None of the above In structures that have non-parallel end members, the displacement of the members will be..... A. Similar B. Different C. Proportional D. Zero E. None of the above. 8. The magnitude of the fix end moment at A 4k/ft using slope deflection method equals to pin exfix ...........k. ft. A. 25 B. -25 C. 40 D. -40 E. None of the above. A roller 15 ft- 12 f The magnitude of MBC for the frame shown in question number 3 using slope deflection method equals Assume El constant for all…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage LearningResidential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage Learning


Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning

Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning

Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning

Residential Construction Academy: House Wiring (M...
Civil Engineering
ISBN:9781285852225
Author:Gregory W Fletcher
Publisher:Cengage Learning

Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning