Concept explainers
Plot the shear diagram, bending moment diagram, axial force diagram, and the qualitative deflected shape of the frame.
Explanation of Solution
Write the condition for static instability, determinacy and indeterminacy of plane frames as follows:
Here, number of members is m, number of external reactions is r, the number of joints is j, and the number of elastic hinges is
Find the degree of static indeterminacy (i) using the equation;
Refer to the Figure in the question;
The number of members (m) is 3.
The number of external reactions (r) is 4.
The number of joints (j) is 4.
The number of elastic hinges
Substitute the values in Equation (2);
Show the free-body diagram of the entire frame as in Figure 1.
Refer Figure 1,
Consider entire frame.
Take moment about point A.
Find the vertical reaction at point A by resolving the vertical component of forces.
Find the horizontal reaction at point A by resolving the horizontal component of forces.
Consider the section DEB.
Find the horizontal reaction at point B by taking moment about the hinge at D.
Substitute 26.25 k for
Show the free-body diagram of the members and joints of the entire frame as in Figure 2.
Consider point A:
Resolve the vertical component of forces.
Resolve the horizontal component of forces.
Consider the member AC:
Resolve the vertical component of forces.
Resolve the horizontal component of forces.
Take moment about the point C.
Consider the point C:
Resolve the vertical component of forces.
Resolve the horizontal component of forces.
Take moment about the point C.
Consider the member CDE:
Resolve the vertical component of forces.
Resolve the horizontal component of forces.
Take moment about the point E.
Consider the point E:
Resolve the vertical component of forces.
Resolve the horizontal component of forces.
Take moment about the point E.
Consider the point B:
Resolve the vertical component of forces.
Resolve the horizontal component of forces.
Plot the moment end forces of the frame as in Figure 3.
Refer to the moment end force diagram plot the shear diagram, bending moment diagram, and the axial force diagrams.
Plot the shear force diagram as in Figure 4.
Refer to the shear force diagram, the maximum bending moment occurs at point F where the shear force changes sign.
Use similar triangle concept for the region CE:
Plot the bending moment diagram as in Figure 5.
Plot the axial force diagram as in Figure 6.
Plot the qualitative deflected shape as in Figure 7.
Want to see more full solutions like this?
Chapter 5 Solutions
Structural Analysis, SI Edition
- find SFD and BMD? where at node K the load is 25 kiparrow_forwardfind SFD and BMDarrow_forwardNote: Please provide a clear, step-by-step, simplified handwritten working out (no explanations!), ensuring it is completed without any AI involvement. I require an expert-level answer and will assess and rate your work based on its quality and accuracy, refer to the provided image for additional clarity. Make sure to double-check everything for correctness before submitting. Thanks, appreciate your time and effort!.arrow_forward
- Need help!! Add martin luther king jr day as a holiday so it won't be a work dayarrow_forwardضهقعفكضكشتبتلتيزذظظؤوروىووؤءظكصحبت٢٨٩٤٨٤ع٣خ٩@@@#&#)@)arrow_forwardA steel rod 100 ft long holds a 200 lb weight as shown. If the diameter of the circular rod is ¼ inch, find the maximum normal stress in the road, taking into account the weight of the rod itself. Use: density of steel = ϒ = 490 lb/ft3 .arrow_forward
- ضهقعفكضكشتبتلتيزذظظؤوروىووؤءظكصحبت٢٨٩٤٨٤ع٣خ٩@@@#&#)@)arrow_forwardضهقعفكضكشتبتلتيزذظظؤوروىووؤءظكصحبت٢٨٩٤٨٤ع٣خ٩@@@#&#)@)arrow_forwardA square flexible foundation of width B applies a uniform pressure go to the underlying ground. (a) Determine the vertical stress increase at a depth of 0.5B below the center using Aσ beneath the corner of a uniform rectangular load given by Aσ Variation of Influence Value I m n 0.5 0.6 0.8 1.0 0.2 0.4 0.2 0.01790 0.03280 0.03866 0.04348 0.05042 0.05471 0.4 0.03280 0.06024 0.07111 0.08009 0.09314 0.10129 0.5 0.03866 0.07111 0.08403 0.09473 0.11035 0.12018 0.6 0.04348 0.08009 0.09473 0.10688 0.12474 0.13605 0.8 0.05042 0.09314 0.11035 0.12474 0.14607 0.15978 1.0 0.05471 0.10129 0.12018 0.13605 0.15978 0.17522 (Enter your answer to three significant figures.) Ασ/90 = Activity Frame (b) Determine the vertical stress increase at a depth of 0.5B below the center using the 2 : 1 method equation below. 90 x B x L Aσ = (B+ z) (L+ z) (Enter your answer to three significant figures.) Δσ/90 = (c) Determine the vertical stress increase at a depth of 0.5B below the center using stress isobars in…arrow_forward
- Need help!!!arrow_forward2 A flexible circular area is subjected to a uniformly distributed load of 450 kN/m² (the figure below). The diameter of the load area is 2 m. Estimate the average stress increase (Aσay) below the center of the loaded area between depths of 3 m and 6 m. H₂ 1.0 H₂ B 0.8 CHI HD DV 0.6 C 1.0 1.5 0.4 0.2 6.0 8.0. 10.0 2.0 2.5 3.0 4.0 5.0 H₁ (Enter your answer to two significant figures.) Δσαν τ kN/m² 6arrow_forwardRefer to the figure below. Using the procedure outlined in your textbook, determine the average stress increase in the clay layer below the center of the foundation due to the net foundation load of 45 tons. Use the equations: Aσ = and qo x B x L (B+ z)(L+ z) Aσ av (H2/H₁) Δσι +44 + Δσο net load 6 4:5 ft 10 ft 5ft x 5ft Sand Sand y=100 lb/ft³ Ysat 122 lb/ft³:" Ysat 120 lb/ft³: 0.7 C=0.25 Groundwater table C=0.06 Preconsolidation pressure = 2000 lb/ft² (Enter your answer to three significant figures.) Ασαν = lb/ft²arrow_forward