
College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 8PE
Show that the acceleration of any object down a frictionless incline that makes an angle
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Title: Studying the Relationship Between Drop Height and Bouncing Height of a Ball: You can drop balls of different materials (e.g., rubber, plastic, ping pong) from various heights onto a flat surface and measure the height of their bounce using a ruler.
Introduction: (What do you expect to learn? What is the purpose of this lab? List any questions this experiment will answer.)
Hypothesis: (Predict the outcome(s) of the experiment, must be in an “if…then format.)
Materials: (What equipment and materials did you need for this experiment assignment? Describe how any equipment was connected. Also mention any special hardware or connections. List the name and amount of each item used.)
Procedures: (What steps did you take to accomplish this lab assignment? Include Safety Precautions.)
Data Collection: (Record the data that is required at each step of the lab: tables, charts, graphs, sketches, etc.)
Data Analysis: (Explain you…
A traveler at an airport takes an escalator up one floor as in the figure below. The moving staircase would itself carry him upward with vertical velocity component v between entry and exit points separated by height h. However, while the escalator is moving, the hurried traveler climbs the
steps of the escalator at a rate of n steps/s. Assume that the height of each step is hs.
(a) Determine the amount of chemical energy converted into mechanical energy by the traveler's leg muscles during his escalator ride given that his mass is m. (Use any variable or symbol stated above along with the following as necessary: g.)
energy =
(b) Determine the work the escalator motor does on this person. (Use any variable or symbol stated above along with the following as necessary: g.)
work =
Which of the following is part of the interior of the Sun?
photosphere
the corona
sunspots
radiation zone
Chapter 5 Solutions
College Physics
Ch. 5 - Define normal force. What is its relationship to...Ch. 5 - The glue on a piece of tape can exert forces. Can...Ch. 5 - When you learn to drive, you discover that you...Ch. 5 - When you push a piece of chalk across a...Ch. 5 - Athletes such as swimmers and bicyclists wear body...Ch. 5 - Two expressions were used for the drag force...Ch. 5 - As cars travel, oil and gasoline leaks onto the...Ch. 5 - Why can a squirrel jump from a tree branch to the...Ch. 5 - The elastic properties of the arteries are...Ch. 5 - What are you feeling when you feel your pulse?...
Ch. 5 - Examine different types of shoes, including sports...Ch. 5 - Would you expect your height to be different...Ch. 5 - Why can a squirrel from a tree branch to the...Ch. 5 - Explain why pregnant women often suffer from back...Ch. 5 - An old carpenter's trick to keep nails from...Ch. 5 - When a glass bottle full of vinegar warms up, both...Ch. 5 - A physics major is cooking breakfast when he...Ch. 5 - (a) When rebuilding her car's engine, a physics...Ch. 5 - (a) What is the maximum frictional force in the...Ch. 5 - Suppose you have a 120-kg wooden crate resting on...Ch. 5 - (a) If half of the weight of a small 1.00103 kg...Ch. 5 - A team of eight dogs pulls a sled with waxed wood...Ch. 5 - Consider the 65.0-kg ice skater being pushed by...Ch. 5 - Show that the acceleration of any object down a...Ch. 5 - Show that the acceleration of any object down an...Ch. 5 - Calculate the deceleration of a snow boarder going...Ch. 5 - (a) Calculate the acceleration of a skier heading...Ch. 5 - If an object is to rest on an incline without...Ch. 5 - Calculate the maximum deceleration of a car that...Ch. 5 - Calculate the maximum acceleration of a car that...Ch. 5 - Repeat Exercise 5.14 for a car with four-wheel...Ch. 5 - A freight train consists of two 8.00105 -kg...Ch. 5 - Consider the 52.0-kg mountain climber in Figure...Ch. 5 - A contestant in a winter sporting event pushes a...Ch. 5 - Repeat Exercise 5.18 with the contestant pulling...Ch. 5 - The terminal velocity of a person falling in air...Ch. 5 - A 60-kg and a go-kg skydiver jump from an airplane...Ch. 5 - A 560-g squirrel with a surface area of 930 cm2...Ch. 5 - To maintain a constant speed, the force provided...Ch. 5 - By what factor does the drag force on a car...Ch. 5 - Calculate the speed a spherical rain drop would...Ch. 5 - Using Stokes' law, verify that the units for...Ch. 5 - Find the terminal velocity of a spherical...Ch. 5 - Stokes' law describes sedimentation of particles...Ch. 5 - During a circus act, one performer swings upside...Ch. 5 - During a wrestling match, a 150 kg wrestler...Ch. 5 - (a) The "lead" in pencils is a graphite...Ch. 5 - TV broadcast antennas are the tallest artificial...Ch. 5 - (a) By how much does a 65.0-kg mountain climber...Ch. 5 - A 20.0-m tall hollow aluminum flagpole is...Ch. 5 - As an oil well is drilled, each new section of...Ch. 5 - Calculate the force a piano tuner applies to...Ch. 5 - A vertebra is subjected to a shearing force of 500...Ch. 5 - A disk between vertebrae in the spine is subjected...Ch. 5 - When using a pencil eraser, you exert a vertical...Ch. 5 - To consider the effect of wires hung on poles, we...Ch. 5 - A farmer making grape juice fills a glass bottle...Ch. 5 - (a) When water freezes, its volume increases by...Ch. 5 - This problem returns to the tightrope walker...Ch. 5 - The pole in Figure 5.24 is at a 90.0° bend in a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
17. A speed skater moving to the left across frictionless ice at 8.0 m/s hits a 5.0-m-wide patch of rough ice....
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
2. Whether an allele is dominant or recessive depends on
a. how common the allele is, relative to other alleles...
Campbell Biology: Concepts & Connections (9th Edition)
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
Raw Oysters and Antacids: A Deadly Mix? The highly acidic environment of the stomach kills most bacteria before...
Microbiology with Diseases by Body System (5th Edition)
DRAW IT Pea plants heterozygous for flower position and stem length (AaTt) are allowed to self-pollinate, and ...
Campbell Biology (11th Edition)
1. If an object is not moving, does that mean that there are no forces acting on it? Explain.
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Most craters on the surface of the Moon are believed to be caused by which of the following? faults asteroids volcanoes meteoroidsarrow_forwardAn object is subjected to a friction force with magnitude 5.49 N, which acts against the object's velocity. What is the work (in J) needed to move the object at constant speed for the following routes? y (m) C B (5.00, 5.00) A x (m) © (a) the purple path O to A followed by a return purple path to O ] (b) the purple path O to C followed by a return blue path to O ] (c) the blue path O to C followed by a return blue path to O ] (d) Each of your three answers should be nonzero. What is the significance of this observation? ○ The force of friction is a conservative force. ○ The force of friction is a nonconservative force.arrow_forwardA block of mass m = 2.50 kg is pushed d = 2.30 m along a frictionless horizontal table by a constant applied force of magnitude F = 10.0 N directed at an angle 25.0° below the horizontal as shown in the figure below. m (a) Determine the work done by the applied force. ] (b) Determine the work done by the normal force exerted by the table. ] (c) Determine the work done by the force of gravity. ] (d) Determine the work done by the net force on the block. ]arrow_forward
- A man pushing a crate of mass m = 92.0 kg at a speed of v = 0.845 m/s encounters a rough horizontal surface of length = 0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.357 and he exerts a constant horizontal force of 294 N on the crate. e (a) Find the magnitude and direction of the net force on the crate while it is on the rough surface. magnitude direction ---Select--- N (b) Find the net work done on the crate while it is on the rough surface. ] (c) Find the speed of the crate when it reaches the end of the rough surface. m/sarrow_forwardTwo blocks, A and B (with mass 45 kg and 120 kg, respectively), are connected by a string, as shown in the figure below. The pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the incline is μk = 0.26. Determine the change in the kinetic energy of block A as it moves from to, a distance of 15 m up the incline (and block B drops downward a distance of 15 m) if the system starts from rest. × J 37° Barrow_forwardYou are working for the Highway Department. In mountainous regions, highways sometimes include a runaway truck ramp, and you are asked to help with the design of such a ramp. A runaway truck ramp is often a lane of gravel adjacent to a long downhill section of roadway where trucks with failing brakes may need assistance to stop. Working with your supervisor, you develop a worst-case scenario: a truck with a mass of 6.00 × 104 kg enters a runaway truck lane traveling at 34.1 m/s. Assume that the maximum constant value for safe acceleration of the truck is -5.00 m/s². Any higher magnitude of acceleration increases the likelihood that semi-trailer rigs could jackknife. Your supervisor asks you to advise her on the required length (in m) of a runaway truck lane on a flat section of ground next to the roadway. marrow_forward
- A large cruise ship of mass 6.20 × 107 kg has a speed of 10.2 m/s at some instant. (a) What is the ship's kinetic energy at this time? ] (b) How much work is required to stop it? (Give the work done on the ship. Include the sign of the value in your answer.) ] (c) What is the magnitude of the constant force required to stop it as it undergoes a displacement of 3.10 km? Narrow_forwardA 7.80 g bullet is initially moving at 660 m/s just before it penetrates a block of wood to a depth of 6.20 cm. (a) What is the magnitude of the average frictional force (in N) that is exerted on the bullet while it is moving through the block of wood? Use work and energy considerations to obtain your answer. N (b) Assuming the frictional force is constant, how much time (in s) elapses between the moment the bullet enters the block of wood and the moment it stops moving? Sarrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward
- Two blocks, A and B (with mass 45 kg and 120 kg, respectively), are connected by a string, as shown in the figure below. The pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the incline is μk = 0.26. Determine the change in the kinetic energy of block A as it moves from to ①, a distance of 15 m up the incline (and block B drops downward a distance of 15 m) if the system starts from rest. ] 37° A © Barrow_forwardA skateboarder with his board can be modeled as a particle of mass 80.0 kg, located at his center of mass. As shown in the figure below, the skateboarder starts from rest in a crouching position at one lip of a half-pipe (point). On his descent, the skateboarder moves without friction so that his center of mass moves through one quarter of a circle of radius 6.20 m. i (a) Find his speed at the bottom of the half-pipe (point Ⓡ). m/s (b) Immediately after passing point Ⓑ, he stands up and raises his arms, lifting his center of mass and essentially "pumping" energy into the system. Next, the skateboarder glides upward with his center of mass moving in a quarter circle of radius 5.71 m, reaching point D. As he passes through point ①, the speed of the skateboarder is 5.37 m/s. How much chemical potential energy in the body of the skateboarder was converted to mechanical energy when he stood up at point Ⓑ? ] (c) How high above point ① does he rise? marrow_forwardA 31.0-kg child on a 3.00-m-long swing is released from rest when the ropes of the swing make an angle of 29.0° with the vertical. (a) Neglecting friction, find the child's speed at the lowest position. m/s (b) If the actual speed of the child at the lowest position is 2.40 m/s, what is the mechanical energy lost due to friction? ]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY