College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 21PE
A 60-kg and a go-kg skydiver jump from an airplane at an altitude of 6000 m, both falling in the pike position. Make some assumption on their frontal areas and calculate their terminal velocities. How long will it take for each skydiver to reach the ground (assuming the time to reach terminal velocity is small)? Assume all values are accurate to three significant digits.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A 60-kg and a 90-kg skydiver jump from an airplane at an altitude of 6000 m, both falling in a headfirst position. Make some assumption on their frontal areas and calculate their terminal velocities. How long will it take for each skydiver to reach the ground (assuming the time to reach terminal velocity is small)? Assume all values are accurate to three significant digits.
Terminal velocity is the maximum velocity attainable by an object as it falls through air. Since the drag force of air increases with the increasing falling velocity, the object will reach its terminal velocity during a fall and then remain at that velocity.
Unfortunately, cats fall out of windows in cities sometimes. A famous article, in The New York Times notes that the likelihood that a cat survives a fall goes down as the fall distance increases (expected) but then goes back up at very large distances (perhaps unexpected). If the statistics are correct, then there should be some physical reason this occurs. Some have suggested that terminal velocity and cat biology come into play. The article above indicates that cats have a terminal velocity of 60 miles per hour (mph).
If we model the drag force Fd (N) on a cat as
Fd = 1/2 kAV2
where A is the cross-sectional area of the cat (assuming it is a cylindrical shape), V is its velocity and k=1 kg/m3,
Calculate the cross-sectional…
A basketball player jumps straight up for a ball. To do this, he lowers his body 0.300 m and then accelerates through this distance by forcefully straightening his legs. This player leaves the floor with a vertical velocity sufficient to carry him 0.900 m above the floor. (a) Calculate his velocity when he leaves the floor. (b) Calculate his acceleration while he is straightening his legs. He goes from zero to the velocity found in (a) in a distance of 0.300 m. (c) Calculate the force he exerts on the floor to do this, given that his mass is 110.0 kg.
Chapter 5 Solutions
College Physics
Ch. 5 - Define normal force. What is its relationship to...Ch. 5 - The glue on a piece of tape can exert forces. Can...Ch. 5 - When you learn to drive, you discover that you...Ch. 5 - When you push a piece of chalk across a...Ch. 5 - Athletes such as swimmers and bicyclists wear body...Ch. 5 - Two expressions were used for the drag force...Ch. 5 - As cars travel, oil and gasoline leaks onto the...Ch. 5 - Why can a squirrel jump from a tree branch to the...Ch. 5 - The elastic properties of the arteries are...Ch. 5 - What are you feeling when you feel your pulse?...
Ch. 5 - Examine different types of shoes, including sports...Ch. 5 - Would you expect your height to be different...Ch. 5 - Why can a squirrel from a tree branch to the...Ch. 5 - Explain why pregnant women often suffer from back...Ch. 5 - An old carpenter's trick to keep nails from...Ch. 5 - When a glass bottle full of vinegar warms up, both...Ch. 5 - A physics major is cooking breakfast when he...Ch. 5 - (a) When rebuilding her car's engine, a physics...Ch. 5 - (a) What is the maximum frictional force in the...Ch. 5 - Suppose you have a 120-kg wooden crate resting on...Ch. 5 - (a) If half of the weight of a small 1.00103 kg...Ch. 5 - A team of eight dogs pulls a sled with waxed wood...Ch. 5 - Consider the 65.0-kg ice skater being pushed by...Ch. 5 - Show that the acceleration of any object down a...Ch. 5 - Show that the acceleration of any object down an...Ch. 5 - Calculate the deceleration of a snow boarder going...Ch. 5 - (a) Calculate the acceleration of a skier heading...Ch. 5 - If an object is to rest on an incline without...Ch. 5 - Calculate the maximum deceleration of a car that...Ch. 5 - Calculate the maximum acceleration of a car that...Ch. 5 - Repeat Exercise 5.14 for a car with four-wheel...Ch. 5 - A freight train consists of two 8.00105 -kg...Ch. 5 - Consider the 52.0-kg mountain climber in Figure...Ch. 5 - A contestant in a winter sporting event pushes a...Ch. 5 - Repeat Exercise 5.18 with the contestant pulling...Ch. 5 - The terminal velocity of a person falling in air...Ch. 5 - A 60-kg and a go-kg skydiver jump from an airplane...Ch. 5 - A 560-g squirrel with a surface area of 930 cm2...Ch. 5 - To maintain a constant speed, the force provided...Ch. 5 - By what factor does the drag force on a car...Ch. 5 - Calculate the speed a spherical rain drop would...Ch. 5 - Using Stokes' law, verify that the units for...Ch. 5 - Find the terminal velocity of a spherical...Ch. 5 - Stokes' law describes sedimentation of particles...Ch. 5 - During a circus act, one performer swings upside...Ch. 5 - During a wrestling match, a 150 kg wrestler...Ch. 5 - (a) The "lead" in pencils is a graphite...Ch. 5 - TV broadcast antennas are the tallest artificial...Ch. 5 - (a) By how much does a 65.0-kg mountain climber...Ch. 5 - A 20.0-m tall hollow aluminum flagpole is...Ch. 5 - As an oil well is drilled, each new section of...Ch. 5 - Calculate the force a piano tuner applies to...Ch. 5 - A vertebra is subjected to a shearing force of 500...Ch. 5 - A disk between vertebrae in the spine is subjected...Ch. 5 - When using a pencil eraser, you exert a vertical...Ch. 5 - To consider the effect of wires hung on poles, we...Ch. 5 - A farmer making grape juice fills a glass bottle...Ch. 5 - (a) When water freezes, its volume increases by...Ch. 5 - This problem returns to the tightrope walker...Ch. 5 - The pole in Figure 5.24 is at a 90.0° bend in a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The electromagnetic spectrum of light is often arranged in terms of frequency. Which one of the following has t...
Lecture- Tutorials for Introductory Astronomy
2. A kidnapper demands a 40.0 kg cube of platinum as a ransom. What is the length of a side?
College Physics (10th Edition)
1. A person gets in an elevator on the ground floor and rides it to the top floor of a building. Sketch a veloc...
College Physics: A Strategic Approach (4th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
The speed of the person sitting on the chair relative to the chair and relative to Earth.
Conceptual Physics (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How would (a) an updraft affect a skydiver in reaching terminal velocity? (b) a downdraft?arrow_forwardThe terminal velocity of a human being is 200 km/hr, and it takes about 12 seconds to achieve this. This calculation considers for air friction of course. What would a person’s speed be if they free fell for 12 seconds instead (no air friction present)?arrow_forwardA basketball player jumps straight up for a ball. To do this, he lowers his body 0.300 m and then accelerates through this distance by forcefully straightening his legs. This player leaves the floor with a vertical velocity sufficient to carry him 0.900 m above the floor. (a) Calculate his velocity when he leaves the floor. (b) Calculate his acceleration while he is straightening his legs. He goes from zero to the velocity found in part (a) in a distance of 0.300 m. (c) Calculate the force he exerts on the floor to do this, given that his mass is 110 kg.arrow_forward
- calculate the velocity a spherical rain drop would achieve falling (taking downward as positive) from 4.4 km in the following situations.h = 4.4 kml = 4.2 mmd = 1.15 kg/m3 Calculate the velocity with air drag in m/s. Take the size across of the drop to be 4.2 mm, the density of air to be 1.15 kg/m3, th density of water to be 1000 kg/m3, the surface area to be πr2, and the drag coefficient to be 1.0.arrow_forwardIf the air track wasn't levelled properly the weight and the normal force would no longer cancel. How would the equation Fnet = mh g have to be modified in this case?arrow_forward7. The effects of atmospheric drag cannot be deglected, in general, on the dynamics of objects moving through the air. The drag force is found to be FD where p is the density of air, A is the cross sectional area of the object, v is the object's velocity, and Cp is the so called drag coefficient. For a baseball Cp is measured to be - .5ρA Cp υ?, .3. (a) If the baseball is launched vertically with a speed of 90 miles per hour, how high will it travel? How would the answer change ignoring air resistance? (b) What is the speed of the baseball when it comes back down? How would the answer change if there was no air resistance? (c) How long does it take for the baseball to go up? Down? How would the anwers change in the absence of air resistance?arrow_forward
- 2) A disk (40mm diameter and 0.2 kg mass) is dropped in the air. Consider g = 10 m/s² and the density of air 1.2 kg/m³. Assume that the drag coefficient of the disk is 1.17. At t=0, the disk speed V = 0. a) What is the acceleration and distance when the ball speed reaches to 1/4V₁, where V, is the terminal speed? b) What would be the answer for part (a) if the falling object is hemispherical (40mm diameter and 0.2 kg mass)? Explainarrow_forwardEstimate the terminal speed of a wooden sphere (density 0.830 g/cm3) falling through air, if its radius is 8.00 cm and its drag coefficient is 0.500. (The density of air is 1.20 kg/m3.) (b) From what height would a freely falling object reach this speed in the absence of air resistance?arrow_forwardThe brakes on a big truck fail and it is forced to use a runaway truck lane. The lane is perfectly horizontal, and full of deep gravel, creating a coefficient of kinetic friction between the truck and the gravel of 0.80. The truck enters the lane at moving 35 m/s (about 80 mph). How far does the truck travel before it stops?arrow_forward
- The average skydiver, with parachute unopened, weighs 80 kg. Depending on the orientation of theskydiver, whether vertical (upright)or horizontal (lying flat), what are the minimum and maximum terminal speedsattained at an altitude of 2000 marrow_forwardA yacht is cruising at a speed of 10.4 m/s in still water when it shuts off its engines and coasts to rest. The water exerts drag forces on the yacht such that its speed during -ct v,e, where v is the speed at time t, v 0, and c is a constant. At a time of t = 17.5 s after the engines are cut, the speed is is the initial speed at t coasting is given by v 5.00 m/s. What is the constant c (in s) in the expression? (a) 1 0.042 (b) What is the speed (in m/s) at t = 40.0 s? 1.95 m/s (c) Given the expression above for the speed at any time, which of the expressions below gives the yacht's acceleration while coasting? а3 —су -ct а3 се а %3D сV сV а%3 ct а %3D —се X\ Note the acceleration (in one direction) is the derivative of the speed. Take the derivative with respect to time and check the resulting expression carefully. How does it compare to the expression for the speed?arrow_forwardM4arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY