Essentials Of Business Analytics
Essentials Of Business Analytics
1st Edition
ISBN: 9781285187273
Author: Camm, Jeff.
Publisher: Cengage Learning,
bartleby

Videos

Question
Book Icon
Chapter 5, Problem 8P

(a)

To determine

Obtain exponential smoothing for α=0.1 and α=0.2.

Identify the preferred smoothing constant using MSE measure of forecast accuracy.

(a)

Expert Solution
Check Mark

Explanation of Solution

Exponential smoothing for α=0.1:

Exponential smoothing is obtained using the formula given below:

y^t+1=αyt+(1α)y^t

WeekTime Series ValueForecastForecast ErrorSquared Forecast Error
117
2210.1(17)+(10.1)(17)=174.0016.00
3190.1(21)+(10.1)(17)=17.401.602.56
4230.1(19)+(10.1)(17.4)=17.565.4429.59
5180.1(23)+(10.1)(17.56)=18.10−0.100.01
6160.1(18)+(10.1)(18.10)=18.09−2.094.38
7200.1(16)+(10.1)(18.09)=17.882.124.48
8180.1(20)+(10.1)(17.88)=18.10−0.100.01
9220.1(18)+(10.1)(18.1)=18.093.9115.32
10200.1(22)+(10.1)(18.09)=18.481.522.32
11150.1(20)+(10.1)(18.48)=18.63−3.6313.18
12220.1(15)+(10.1)(18.63)=18.273.7313.94
Total101.78

MSE=|er|2nk=101.7811=9.253

Thus, the mean squared error is 9.253.

Exponential smoothing for α=0.2:

WeekTime Series ValueForecastForecast ErrorSquared Forecast Error
117  
2210.2(17)+(10.2)(17)=174.0016.00
3190.2(21)+(10.2)(17)=17.81.201.44
4230.2(19)+(10.2)(17.8)=18.044.9624.60
5180.2(23)+(10.2)(18.04)=19.03−1.031.07
6160.2(18)+(10.2)(19.03)=18.83−2.837.98
7200.2(16)+(10.2)(18.83)=18.261.743.03
8180.2(20)+(10.2)(18.26)=18.61−0.610.37
9220.2(18)+(10.2)(18.61)=18.493.5112.34
10200.2(22)+(10.2)(18.49)=19.190.810.66
11150.2(20)+(10.2)(19.19)=19.35−4.3518.94
12220.2(15)+(10.2)(19.35)=18.483.5212.38
Total98.80

MSE=|er|2nk=98.8011=8.982

Thus, the mean squared error is 8.982.

MSE when α=0.2 is less than MSE when α=0.1. Thus, α=0.2 is preferred.

(b)

To determine

Check whether the results are same when MAE is used as measure of accuracy.

(b)

Expert Solution
Check Mark

Answer to Problem 8P

No, the results are not same.

Explanation of Solution

The MSE for four-week moving average is obtained as given below:

Exponential smoothing for α=0.1:

Exponential smoothing is obtained using the formula given below:

y^t+1=αyt+(1α)y^t

WeekTime Series ValueForecastForecast ErrorAbsolute Forecast Error
117
2210.1(17)+(10.1)(17)=174.004.00
3190.1(21)+(10.1)(17)=17.401.601.60
4230.1(19)+(10.1)(17.4)=17.565.445.44
5180.1(23)+(10.1)(17.56)=18.10−0.100.10
6160.1(18)+(10.1)(18.10)=18.09−2.092.09
7200.1(16)+(10.1)(18.09)=17.882.122.12
8180.1(20)+(10.1)(17.88)=18.10−0.100.10
9220.1(18)+(10.1)(18.1)=18.093.913.91
10200.1(22)+(10.1)(18.09)=18.481.521.52
11150.1(20)+(10.1)(18.48)=18.63−3.633.63
12220.1(15)+(10.1)(18.63)=18.273.733.73
Total28.25

MAE=|er|nk=28.258=2.568

Thus, the mean absolute error is 2.568.

Exponential smoothing for α=0.2:

WeekTime Series ValueForecastForecast ErrorSquared Forecast Error
117  
2210.2(17)+(10.2)(17)=174.004.00
3190.2(21)+(10.2)(17)=17.81.201.20
4230.2(19)+(10.2)(17.8)=18.044.964.96
5180.2(23)+(10.2)(18.04)=19.03−1.031.03
6160.2(18)+(10.2)(19.03)=18.83−2.832.83
7200.2(16)+(10.2)(18.83)=18.261.741.74
8180.2(20)+(10.2)(18.26)=18.61−0.610.61
9220.2(18)+(10.2)(18.61)=18.493.513.51
10200.2(22)+(10.2)(18.49)=19.190.810.81
11150.2(20)+(10.2)(19.19)=19.35−4.354.35
12220.2(15)+(10.2)(19.35)=18.483.523.52
Total28.56

MAE=|er|nk=28.5611=2.596

Thus, the mean absolute error is 2.596.

MAE when α=0.1 is less than MAE when α=0.2. Thus, α=0.1 is preferred.

Hence, the results are not same when MAE is used as measure of accuracy.

(c)

To determine

Obtain the results when MAPE is used as measure of accuracy.

(c)

Expert Solution
Check Mark

Answer to Problem 8P

MAPE when α=0.1 is 12.95.

MAPE when α=0.2 is 13.40.

Explanation of Solution

Exponential smoothing for α=0.1:

WeekTime Series ValueForecastForecast Error|100×Forecast errorTime series value|
117 
2210.1(17)+(10.1)(17)=174.0019.05
3190.1(21)+(10.1)(17)=17.401.608.42
4230.1(19)+(10.1)(17.4)=17.565.4423.65
5180.1(23)+(10.1)(17.56)=18.10−0.100.58
6160.1(18)+(10.1)(18.10)=18.09−2.0913.09
7200.1(16)+(10.1)(18.09)=17.882.1210.58
8180.1(20)+(10.1)(17.88)=18.10−0.100.53
9220.1(18)+(10.1)(18.1)=18.093.9117.79
10200.1(22)+(10.1)(18.09)=18.481.527.61
11150.1(20)+(10.1)(18.48)=18.63−3.6324.20
12220.1(15)+(10.1)(18.63)=18.273.7316.97
Total142.46

MAPE=|100×Forecast errorTime series value|nk=142.4611=12.95

Thus, the value of MAPE is 12.95.

Exponential smoothing for α=0.2:

WeekTime Series ValueForecastForecast Error|100×Forecast errorTime series value|
117  
2210.2(17)+(10.2)(17)=174.0019.05
3190.2(21)+(10.2)(17)=17.81.206.32
4230.2(19)+(10.2)(17.8)=18.044.9621.57
5180.2(23)+(10.2)(18.04)=19.03−1.035.73
6160.2(18)+(10.2)(19.03)=18.83−2.8317.66
7200.2(16)+(10.2)(18.83)=18.261.748.70
8180.2(20)+(10.2)(18.26)=18.61−0.613.38
9220.2(18)+(10.2)(18.61)=18.493.5115.97
10200.2(22)+(10.2)(18.49)=19.190.814.05
11150.2(20)+(10.2)(19.19)=19.35−4.3529.01
12220.2(15)+(10.2)(19.35)=18.483.5215.99
Total147.43

MAPE=|100×Forecast errorTime series value|nk=147.4311=13.40

Thus, the value of MAPE is 13.40.

MAPE when α=0.1 is less than MAPE when α=0.2. Thus, α=0.1 is preferred.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Please could you explain why 0.5 was added to each upper limpit of the intervals.Thanks
28. (a) Under what conditions do we say that two random variables X and Y are independent? (b) Demonstrate that if X and Y are independent, then it follows that E(XY) = E(X)E(Y); (e) Show by a counter example that the converse of (ii) is not necessarily true.
1. Let X and Y be random variables and suppose that A = F. Prove that Z XI(A)+YI(A) is a random variable.
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Algebra
Algebra
ISBN:9781938168383
Author:Jay Abramson
Publisher:OpenStax
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Text book image
College Algebra
Algebra
ISBN:9781337282291
Author:Ron Larson
Publisher:Cengage Learning
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Text book image
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Time Series Analysis Theory & Uni-variate Forecasting Techniques; Author: Analytics University;https://www.youtube.com/watch?v=_X5q9FYLGxM;License: Standard YouTube License, CC-BY
Operations management 101: Time-series, forecasting introduction; Author: Brandoz Foltz;https://www.youtube.com/watch?v=EaqZP36ool8;License: Standard YouTube License, CC-BY