For the given two gaseous(X and Y) in the same container, as the reaction occurs to form the gas XY, it should be needed to check whether the volume of the container increase or decrease. Concept introduction: By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law . According to ideal gas law, PV=nRT Where, P = pressure in atmospheres V= volumes in liters n = number of moles R =universal gas constant ( 0 .08206L×atm/K×mol ) T = temperature in kelvins By knowing any three of these properties, the state of a gas can be simply identified with applying the ideal gas equation. For a gas at two conditions, the unknown variable can be determined by knowing the variables that change and remain constant and can be generated an equation for unknown variable from ideal gas equation. By rearranging the above equation, unknown volume (V) V= nRT P
For the given two gaseous(X and Y) in the same container, as the reaction occurs to form the gas XY, it should be needed to check whether the volume of the container increase or decrease. Concept introduction: By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law . According to ideal gas law, PV=nRT Where, P = pressure in atmospheres V= volumes in liters n = number of moles R =universal gas constant ( 0 .08206L×atm/K×mol ) T = temperature in kelvins By knowing any three of these properties, the state of a gas can be simply identified with applying the ideal gas equation. For a gas at two conditions, the unknown variable can be determined by knowing the variables that change and remain constant and can be generated an equation for unknown variable from ideal gas equation. By rearranging the above equation, unknown volume (V) V= nRT P
Solution Summary: The author explains that by combining the three gaseous laws, the state of a gas can be identified by applying the ideal gas equation.
Definition Definition Number of atoms/molecules present in one mole of any substance. Avogadro's number is a constant. Its value is 6.02214076 × 10 23 per mole.
Chapter 5, Problem 8ALQ
Interpretation Introduction
Interpretation:
For the given two gaseous(X and Y) in the same container, as the reaction occurs to form the gas XY, it should be needed to check whether the volume of the container increase or decrease.
Concept introduction:
By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law.
According to ideal gas law,
PV=nRT
Where,
P = pressure in atmospheres
V= volumes in liters
n = number of moles
R =universal gas constant (
0.08206L×atm/K×mol)
T = temperature in kelvins
By knowing any three of these properties, the state of a gas can be simply identified with applying the ideal gas equation. For a gas at two conditions, the unknown variable can be determined by knowing the variables that change and remain constant and can be generated an equation for unknown variable from ideal gas equation.
By rearranging the above equation, unknown volume (V)
What would you expect to be the major product obtained from the following reaction? Please explain what is happening here. Provide a detailed explanation and a drawing showing how the reaction occurs. The correct answer to this question is V.
Please answer the question for the reactions, thank you
What is the product of the following reaction? Please include a detailed explanation of what is happening in this question. Include a drawing showing how the reagent is reacting with the catalyst to produce the correct product. The correct answer is IV.
Chapter 5 Solutions
WebAssign for Zumdahl/Zumdahl/DeCoste's Chemistry, 10th Edition [Instant Access], Single-Term
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.