For a given condition, the pressure should be determined and compared by using ideal gas law , and Van der Waals equation at V= 1.00L and V=10.00L Concept introduction: By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law . According to ideal gas law, P V = n R T Where, P = pressure in atmospheres V= volumes in liters n = number of moles R =universal gas constant ( 0.08206 L ⋅ a t m / K ⋅ m o l ) T = temperature in kelvins A modified ideal gas equation on account of molecular size and molecular interaction forces is termed as Van der Waals equation. That is, [ P + a ( n V ) 2 ] ( V - n b ) = n R T ‘a’ and ‘b’ is called Van der Waals coefficient and are characteristic of the individual gas Where, P = pressure in atmospheres V= volumes in liters n = number of moles R =universal gas constant ( 0.08206 L ⋅ a t m / K ⋅ m o l ) T = temperature in kelvins
For a given condition, the pressure should be determined and compared by using ideal gas law , and Van der Waals equation at V= 1.00L and V=10.00L Concept introduction: By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law . According to ideal gas law, P V = n R T Where, P = pressure in atmospheres V= volumes in liters n = number of moles R =universal gas constant ( 0.08206 L ⋅ a t m / K ⋅ m o l ) T = temperature in kelvins A modified ideal gas equation on account of molecular size and molecular interaction forces is termed as Van der Waals equation. That is, [ P + a ( n V ) 2 ] ( V - n b ) = n R T ‘a’ and ‘b’ is called Van der Waals coefficient and are characteristic of the individual gas Where, P = pressure in atmospheres V= volumes in liters n = number of moles R =universal gas constant ( 0.08206 L ⋅ a t m / K ⋅ m o l ) T = temperature in kelvins
Solution Summary: The author explains that the pressure should be determined and compared by using ideal gas law and Van der Waals equation at V= 1.00L and 10.00L.
Definition Definition Number of atoms/molecules present in one mole of any substance. Avogadro's number is a constant. Its value is 6.02214076 × 10 23 per mole.
Chapter 5, Problem 124E
Interpretation Introduction
Interpretation: For a given condition, the pressure should be determined and compared by using ideal gas law, and Van der Waals equation at V= 1.00L and V=10.00L
Concept introduction:
By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law.
According to ideal gas law,
PV=nRT
Where,
P = pressure in atmospheres
V= volumes in liters
n = number of moles
R =universal gas constant (
0.08206L⋅atm/K⋅mol)
T = temperature in kelvins
A modified ideal gas equation on account of molecular size and molecular interaction forces is termed as Van der Waals equation.
That is,
[P+a(nV)2](V-nb)=nRT
‘a’ and ‘b’ is called Van der Waals coefficient and are characteristic of the individual gas
Indicate similarities and differences between natural, exchanged and pillared clays.
Show work. don't give Ai generated solution
In intercalation compounds, their sheets can be neutral or have a negative or positive charge, depending on the nature of the incorporated species and its structure. Is this statement correct?
Chapter 5 Solutions
WebAssign for Zumdahl/Zumdahl/DeCoste's Chemistry, 10th Edition [Instant Access], Single-Term
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.