Concept explainers
(a)
Interpretation:
The balanced chemical equation for decomposition of
Concept Introduction:
In a balanced chemical equation, all the constituents present in the reaction have equal number of atoms on both side of the reaction arrow.

Answer to Problem 89P
Explanation of Solution
Decommission of solid Ammonium Nitrate generates gaseous dinitrogen oxide along with the water vapour.
The balanced chemical equation of the reaction taking place is as depicted below:
From the above balanced reaction, for each mole of NH4 NO3 produces one mole of di-nitrogen oxide and 2 moles of water.
(b)
Interpretation:
The partial pressure of
Concept Introduction:
To calculate the partial pressure of
Where,

Answer to Problem 89P
Partial pressure of
Explanation of Solution
Calculate the number of moles of
Therefore, number of moles of
Calculate the number of moles of water is as follows:
Therefore, number of moles of water is 0.0624 mol H2 O.
From the ideal equation we have.
To calculate the partial pressure of
Therefore, the partial pressure of
Volume of tank v = 1.75 L.
Number of moles of water n = 0.0624 moles.
The temperature t = 503 K.
To calculate the partial pressure of water, substitute all the known value in the equation.
Therefore, partial pressure of water is 1.47 atm.
(c)
Interpretation:
The total gas pressure present in the flask at 2300 C should be determined.
Concept Introduction:
Dalton's law of partial pressure is state that the total pressure of a mixture gases is sum of the pressures that every gas would exert if it were present alone.

Answer to Problem 89P
Total pressure present in flask is 2.21 atm.
Explanation of Solution
In the provided reaction the gases molecules are
Therefore, total pressure present in flask is 2.21 atm.
(d)
Interpretation:
The three equivalent resonance structure for
Concept Introduction:
The resonance structures show the arrangement of electrons and bonds in a molecule. The lone pair present on atom can show delocalization with pi electrons of double or triple bonds resulting formation of resonance structures. The position of atoms remains the same only position of bonds changes.

Answer to Problem 89P
Explanation of Solution
The resonance structures of N2 O is shown in the following diagram.
Since, nitrogen has 3 valence electrons it can form three covalent bonds with other atoms. There are two valence electrons in oxygen thus, it can form one double or two single bonds with other atoms. Being more electronegative in nature, oxygen atom will be placed at the terminal position. Thus, there will be one double bond between two nitrogen atom and one double bond between nitrogen and oxygen atom resulting negative charge on one nitrogen atom and positive charge on other nitrogen atom.
The negative charge can delocalize with pi electrons of double bond resulting two resonance forms.
Want to see more full solutions like this?
Chapter 5 Solutions
Introduction to General, Organic and Biochemistry
- What are the major products of the following reaction? Please provide a detailed explanation and a drawing to show how the reaction proceeds.arrow_forwardWhat are the major products of the following enolate alkylation reaction? Please include a detailed explanation as well as a drawing as to how the reaction proceeds.arrow_forwardA block of zinc has an initial temperature of 94.2 degrees celcius and is immererd in 105 g of water at 21.90 degrees celcius. At thermal equilibrium, the final temperature is 25.20 degrees celcius. What is the mass of the zinc block? Cs(Zn) = 0.390 J/gxdegrees celcius Cs(H2O) = 4.18 J/gx degrees celcusarrow_forward
- Potential Energy (kJ) 1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. AH = -950 kJ AH = 575 kJ (i) Cl₂ (g) + Pt (s) 2C1 (g) + Pt (s) Ea = 1550 kJ (ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s) (iii) Cl (g) + CICO (g) → Cl₂CO (g) Ea = 2240 kJ Ea = 2350 kJ AH = -825 kJ 2600 2400 2200 2000 1800 1600 1400 1200 1000 a. Draw the potential energy diagram for the reaction. Label the data points for clarity. The potential energy of the reactants is 600 kJ 800 600 400 200 0 -200- -400 -600- -800- Reaction Progressarrow_forwardCan u help me figure out the reaction mechanisms for these, idk where to even startarrow_forwardHi, I need your help with the drawing, please. I have attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forward
- Hi, I need your help i dont know which one to draw please. I’ve attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forward5. Write the formation reaction of the following complex compounds from the following reactants: 6. AgNO₃ + K₂CrO₂ + NH₄OH → 7. HgNO₃ + excess KI → 8. Al(NO₃)₃ + excess NaOH →arrow_forwardIndicate whether the product formed in the reaction exhibits tautomerism. If so, draw the structure of the tautomers. CO₂C2H5 + CH3-NH-NH,arrow_forward
- Draw the major product of this reaction N-(cyclohex-1-en-1-yl)-1-(pyrrolidino) reacts with CH2=CHCHO, heat, H3O+arrow_forwardDraw the starting material that would be needed to make this product through an intramolecular Dieckmann reactionarrow_forwardDraw the major product of this reaction. Nitropropane reacts + pent-3-en-2-one reacts with NaOCH2CH3, CH3CHOHarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co




