FLUID MECHANICS FUND. (LL)-W/ACCESS
4th Edition
ISBN: 9781266016042
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 87P
Water in a partially filled large tank is to be supplied to the roof top, which is 8 m above the water level in the tank, through a 2.5-cm-internal-diameter pipe by maintaining a constant air pressure of 300 kPa (gage) in the tank. If the head loss in the piping is 2 m of water, determine the discharge rate of the supply of water to the rooftop.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Problem 3. A pump is installed in a 250-m-long pipeline to raise water (v = 1 x 10-6 m²/s)
55 m from a reservoir to an elevated tank. The pipe is ductile iron with a diameter of 80
cm and a flow rate of 2.19 m³/s. The pump is placed outside the supply reservoir with a
centerline elevation of 1.5 m below the reservoir water surface. Determine the maximum
distance, Lmax, in meters that the pump could be installed away from the supply reservoir
(the allowable length of the suction line) without encountering cavitation problems. The
required net-positive suction head is NPSH = 4.75 m and the water is at 30° C.
Total minor losses for the entire pipeline are 17.8 times the velocity head, including exit loss.
Minor losses in the suction line are 5.0 times the velocity head. Use an atmospheric pressure
of 101.0 kPa.
Lmax
1.50 m
80 cm diameter
P
Water in an enclosed tank is subjected to a gauge pressure of 2 x 10 Pa, appied by a
compressed air introduced into the top of the tank. There is a small hole (diameter = 4 cm) in the
side of the tank 5 m below the level of the water. Calculate the discharge rate.
Water in a partially filled large tank is to be supplied to the roof top, which is 8 m above the water level in the tank, through a 2.5-cm-internal-diameter pipe by maintaining a constant air pressure of 300 kPa (gage) in the tank. If the head loss in the piping is 2 m of water, determine the discharge rate of the supply of water to the roof top. Ans: 0.00986 m3/s or 9.86L/s
Chapter 5 Solutions
FLUID MECHANICS FUND. (LL)-W/ACCESS
Ch. 5 - Does the amount of mass entering a control volume...Ch. 5 - Define mass and volume flow rates. How are they...Ch. 5 - Name four physical quantities that are conserved...Ch. 5 - When is the flow through a control volume steady?Ch. 5 - Consider a device with one inlet and one outlet....Ch. 5 - A hair dryer is basically a duct of constant...Ch. 5 - A garden hose attached with a nozzle is used to...Ch. 5 - Air whose density is 0.082 Ibm/ft3 enters the duct...Ch. 5 - A 0.7$-m3 rigid tank initially contains air whose...Ch. 5 - Consider the flow of an incompressible Newtonian...
Ch. 5 - A desktop computer is to be cooled by a fan whose...Ch. 5 - The minimum fresh air requirement of a residential...Ch. 5 - The ventilating fan of the bathroom of a building...Ch. 5 - Air enters a nozzle steadily at 2.21 kg/m3 and 20...Ch. 5 - Air at 40°C flow steadily through the pipe shown...Ch. 5 - In climates with low night-time temperatures, an...Ch. 5 - What is mechanical energy? How does it differ from...Ch. 5 - Define turbine efficiency, generator efficiency,...Ch. 5 - What is mechanical efficiency? What does a...Ch. 5 - How is the combined pump-motor efficiency of a...Ch. 5 - Prob. 21PCh. 5 - A differential thermocouple with sensors at the...Ch. 5 - Electric power is to be generated by installing a...Ch. 5 - Consider a river flowing toward a lake at an...Ch. 5 - Express the Bernoulli equation in three different...Ch. 5 - What are the three major assumptions used in the...Ch. 5 - Define static, dynamic, and hydrostatic pressure....Ch. 5 - What is streamwise acceleration? How does it...Ch. 5 - What is stagnation pressure? Explain how it can be...Ch. 5 - Define pressure head, velocity head, and elevation...Ch. 5 - How is the location of the hydraulic grade line...Ch. 5 - Prob. 33CPCh. 5 - What is the hydraulic grade line? How does it...Ch. 5 - A glass manometer with oil as the working fluid is...Ch. 5 - The velocity of a fluid flowing in a pipe is to be...Ch. 5 - The water level of a tank on a building roof is 20...Ch. 5 - Prob. 38CPCh. 5 - Prob. 39CPCh. 5 - In a hydroelectric power plant, water enters the...Ch. 5 - A Pitot-static probe is used to measure the speed...Ch. 5 - The air velocity in the duct of a heating system...Ch. 5 - A piezometer and a Pitot tube are tapped into a...Ch. 5 - The diameter of a cylindrical water tank is D0and...Ch. 5 - A siphon pumps water from a large reservoir to a...Ch. 5 - Water flows through a horizontal pipe at a rate of...Ch. 5 - An airplane is flying at an altitude of 10.500 m....Ch. 5 - While traveling on a dirt road, the bottom of a...Ch. 5 - The water in an 8-rn-diameter, 3-rn-high...Ch. 5 - Reconsider Prob. 5-49. Determine how long it will...Ch. 5 - Air at 105 kPa and 37°C flows upward through a...Ch. 5 - Water at 20°C is siphoned from a reservoir as...Ch. 5 - The water pressure in the mains of a city at a...Ch. 5 - A pressurized tank of water has a 10-cm-diameter...Ch. 5 - Air is flowing through a venturi meter whose...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - The air velocity in a duct is measured by a...Ch. 5 - In cold climates, water pipes may freeze and burst...Ch. 5 - Prob. 61PCh. 5 - A fluid of density and viscosity flows through a...Ch. 5 - What is the minimum diameter at section (1) to...Ch. 5 - What is irreversible head loss? How is it related...Ch. 5 - What is useful pump head? How is it related to the...Ch. 5 - Consider the steady adiabatic flow of an...Ch. 5 - Consider the steady adiabatic flow of an...Ch. 5 - What is the kinetic energy correction factor? Is...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - A 3-rn-high tank filled with water has a discharge...Ch. 5 - A person is filling a knee-high bucket with water...Ch. 5 - Tater is being pumped from a large lake to a...Ch. 5 - A 15-hp (shaft) pump is used to raise water to a...Ch. 5 - Water flows at a rate of 0.040 m3/s in a...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - A hydraulic turbine has 50 m of head available at...Ch. 5 - In a hydroelectric power plant, water flows from...Ch. 5 - Reconsider Prob. 5-78E. Determine the flow rate of...Ch. 5 - A fan is to be selected to ventilate a bathroom...Ch. 5 - Water flows at a rate of 20 L/s through a...Ch. 5 - The water level in a tank is 34 ft above the...Ch. 5 - A large tank is initially filled with water 4 m...Ch. 5 - Water enters a hydraulic turbine through a...Ch. 5 - A 78-percent efficient 12-hp pump is pumping water...Ch. 5 - Water is pumped from a lower reservoir to a higher...Ch. 5 - Water in a partially filled large tank is to be...Ch. 5 - Underground water is to be pumped by a 78 percent...Ch. 5 - Reconsider Prob. 5-88. Determine the flow rate of...Ch. 5 - The velocity profile for turbulent flow in a...Ch. 5 - The demand for electric power is usually much...Ch. 5 - Prob. 92PCh. 5 - Consider a fully filled hemisphere shaped tank...Ch. 5 - The velocity of a liquid flowing in a circular...Ch. 5 - Air at 250 kgrn3 enters a nozzle that has an...Ch. 5 - The air in a 5m5-m3-m hospital room is to be...Ch. 5 - The water level in a tank is 70 ft above the...Ch. 5 - A pressurized 2-rn-diameter tank of water has a...Ch. 5 - Underground water is being pumped into a pool...Ch. 5 - Prob. 100PCh. 5 - A very large tank contains air at 102 kPa at a...Ch. 5 - Water is flowing through a Venturi meter whose...Ch. 5 - Water flows at a rate of 0.011 m3/s in a...Ch. 5 - Air flows through a pipe at a rate of 120 L/s. The...Ch. 5 - A 3-rn-high large tank is initially filled with...Ch. 5 - Reconsider Prob. 5-105. In order to dram the tank...Ch. 5 - A D0= 1 2-rn-diameter tank is initially filled...Ch. 5 - An oil pump is drawing 18 kW of electric power...Ch. 5 - A wind tunnel draws atmospheric air at 20°C and...Ch. 5 - Consider a spherical tank containing compressed...Ch. 5 - A tank with openings 1,2, and 3 is moving to left...Ch. 5 - Two dimensionally identical containers are...Ch. 5 - A circular thin plate is placed on the top of a...Ch. 5 - A pump-storage plant uses a turbine to generate...Ch. 5 - A diffuser in a pipe flow is basically a slow...Ch. 5 - Prob. 117PCh. 5 - Prob. 118PCh. 5 - Prob. 119PCh. 5 - Air enters a steady-flow compressor at 1 atm and...Ch. 5 - A 7$-m-high water body that is open to the...Ch. 5 - Prob. 122PCh. 5 - Prob. 123PCh. 5 - A hydraulic turbine is used to generate power by...Ch. 5 - The efficiency of a hydraulic turbine-generator...Ch. 5 - Which one is not an assumption involved with the...Ch. 5 - Consider incompressible, frictionless flow of a...Ch. 5 - Consider incompressible, frictionless flow of...Ch. 5 - Consider water flow in a piping network. The...Ch. 5 - The static and stagnation pressures of a fluid in...Ch. 5 - The static and stagnation pressures of a fluid in...Ch. 5 - The difference between the heights of energy grade...Ch. 5 - Water at 120 kPa (gage) is flowing in a horizontal...Ch. 5 - Water is withdrawn a the bottom of a large tank...Ch. 5 - Water at 80 kPa (gage) enters a horizontal pipe at...Ch. 5 - Liquid ethanol (p = 783 kg/m3) at a pressure of...Ch. 5 - Seawater is to be pumped into a large tank at a...Ch. 5 - An adiabatic pump is used to increase the pressure...Ch. 5 - The shaft power from a 90 percent-efficient...Ch. 5 - Using a 1are bucket whose volume is known and...Ch. 5 - Your company is setting up an experiment that...Ch. 5 - Computer-aided designs, the use of better...Ch. 5 - Using a handheld bicycle pump to generate an air...Ch. 5 - Using a flexible drinking straw and a ruler,...Ch. 5 - The power generated by a wind turbine is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In a pumping system handling water, the level in the suction tank is 3.2m below the pump shaft centerline; and the level in the discharge tank is 21m above the pump shaft centerline. The iniet piping is 7.6cm in diameter and together with its valves fittings is equivalent to 26m straight pipe. The discharge line, 6.35 cm in diameter, with its valves and fittings is equivalent to 72 m straight pipe. If the motor delivers 7.1 kW to the pump shaft, what is the pump efficiency for discharge rate of 12.63 Ips? Assume f = 0.023arrow_forwardWater from a reservoir is pumped over a hill through a pipe 30 cm in diameter, and a pressure of 250 KPa is maintained at the summit where the pipe is 100 m above the reservoir. The quantity pumped is O. 20 m/s and by reason of friction there is a head loss of 15 J/N between reservoir and summit. If the pump is 80% efficient and its motor is 90% efficient, determine the input power of the pumparrow_forwardA submersible pump with a shaft power of 5 kW and an efficiency of 72 percent is used to pump water from a lake to a pool through a constant diameter pipe The free surface of the pool is 25 m above the free surface of the lake. If the irreversible head loss in the piping system is 4 m, determine the discharge rate of water and the pressure difference across the pump.arrow_forward
- The water needs of a small farm are to be met by pumping water from a well that can supply water continuously at a rate of 50 L/min. The water level in the well is 13 m below the ground level, and water is to be pumped to the farm by a 2-cm internal diameter pipe. The required length of piping is measured to be 20 m, and the total head loss in the piping system is estimated to be 10 m. a) Using Bernoulli equation, determine the pressure difference between the two points (A & B). b) Taking the efficiency of the pump to be 70 percent, determine the rated power of the pump that needs to be purchased.arrow_forwardThe water needs of a small farm are to be met by pumping water from a well that can supply water continuously at a rate of 50 L/min. The water level in the well is 13 m below the ground level, and water is to be pumped to the farm by a 2-cm internal diameter pipe. The required length of piping is measured to be 20 m, and the total head loss in the piping system is estimated to be 10 m.a) Using Bernoulli equation, determine the pressure difference between the two points (A & B).arrow_forwardAs can be seen in the figure, the level difference between the two tanks open to the atmosphere is H = 25 m. The fluid in the lower tank is pumped into the upper tank with the help of a centrifugal pump. The continuous loss coefficient of the pipe made of forged steel, f = 0.025, the elbow loss coefficient K = 1. Other losses in the system are neglected. The pipe diameter is D = 16 cm and the flow through the pipe is V = 0.15 m3 / s. According to this;a) Find the pump power.b) Find the pressure at the pump suction pipe inlet.c) Find the pressure at the pump discharge pipe outlet.d) Draw the Energy Slope line and Hydraulic slope lines .arrow_forward
- Water flows through a corner valve at a flow rate of Q=0.75 m³/s . The pressure just upstream of the valve is P₁ = 500 kPa and the pressure just downstream is P₂ = 300 kPa. The inside pipe diameters of the valve inlet and exit are respectively, D₁ = 5 cm and D₂ = 12 cm. If the flow through the valve occurs in a horizontal plane, determine the head loss, h₂ (in meters) and the rate of loss of available energy (in W) across the valve. D2 Diarrow_forwardAs shown in figure below, oil can be siphoned from a tank using a flexible hose, provided that the end of the hose at Point B, is below the free surface in the tank at Point A. The maximum elevation of the hose is at Point C. Oil is being siphoned from the tank through a constant-diameter hose. The end of the siphon at Point B is 6.71 meters below the oil top surface level of the tank at Point A. kg If the gauge pressure at Point C is 90.257 KPa and the density of oil is 890 the m3 vertical distance between Point C and Point B in meters is Blank 1 **EXPRESS YOUR ANSWER INTO TWO (2) DECIMAL PLACE** Point C ... Point A (Top surface) OILarrow_forwardWater from a reservoir is pumped over a hill through a 450 mm diameter and an absolute pressure of 1.0 kg/cm2 is maintained at the summit. Water discharge is 30 m above the reservoir. The quantity pumped is 0.5 m3/s. Frictional losses in the discharge and suction pipe, and pump is equivalent to 1.5 m. The speed of pump is 800 rpm. Determine the following: a.Water power of the pump b.New value of discharge if the speed of the pump is increased to 1000 rpm c.New value of head if the speed of the pump is increased to 1000 rpm d.New value of power if the speed of the pump is increased to 1000 rpm Please solving using the methodology (Given, requires, schematic diagram, solution and discussion)arrow_forward
- A new pump is required for the water supply system of a high-rise office building. The system requires 0.06 m³/s of water pumped to a reservoir at the top of the tower 340 m above the street. City water pressure at the street-level pump inlet is 400 kPa gage. The piping is to be commercial steel, the overall length is 20 percent greater than the tower height, and there are fittings every 10 m with loss coefficients of 0.2. Determine the minimum diameter required to keep the average water velocity below 3.5 m/s in the pipe. Calculate the pressure rise required across the pump and estimate the minimum power needed to drive the pump.arrow_forwardWater at 70°F flows by gravity from a large reservoir at a high elevation to a smaller one through a 60-ft-long, 2-in-diameter cast iron piping system that includes four standard flanged elbows, a well-rounded entrance, a sharp-edged exit, and a fully open gate valve. Taking the free surface of the lower reservoir as the reference level, determine the elevation z1 of the higher reservoir for a flow rate of 10 ft3/min.arrow_forwardThe brake horsepower and water horsepower of a pump are determined to be 15 kW and 12 kW, respectively. If the flow rate of water to the pump under these conditions is 0.05 m3/s, the total head loss of the pump is (a) 11.5 m (b) 9.3 m (c) 7.7 m (d) 6.1 m (e) 4.9 marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License