College Physics, Volume 1
College Physics, Volume 1
2nd Edition
ISBN: 9781133710271
Author: Giordano
Publisher: Cengage
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 68P

(a)

To determine

The acceleration due to gravity on the surface of planet Tungsten.

(a)

Expert Solution
Check Mark

Answer to Problem 68P

The acceleration due to gravity on the surface of planet Tungsten is 4g_.

Explanation of Solution

Write the expression for the acceleration due to gravity on Earth.

    g=GMEarthrEarth2        (I)

Here, g is the acceleration due to gravity on Earth, G is the gravitational constant, MEarth is the mass of Earth, rEarth is the radius of Earth.

The Planet twice the radius of the Earth and twice its density.

    r=2rEarthρ=2ρEarth        (II)

Here, ρ is the density of the Planet, ρEarth is the density of the Planet, r is the radius of the planet.

Use equation (II) and write the expression for the volume of the Planet.

    VPlanet=43πr3=43π(2rEarth)3=(8)(43πrEarth3)        (III)

Here, VPlanet is the volume of the planet.

Write the expression for the density of the Planet.

    ρ=MPlanetVPlanet        (IV)

Here, MPlanet is the mass of the Planet.

Use equation (II) in (IV) to solve for MPlanet.

    MPlanet=ρVPlanet=(2ρEarth)(323πrEarth3)=2(ρEarth)(8)(43πrEarth3)=16(ρEarth)(43πrEarth3)=16MEarth        (V)

Write the expression for the g value for the Planet.

    gPlanet=GMPlanetrPlanet2        (VI)

Here, gPlanet is the force of gravity of the Planet.

Use equation (II) and (V) in (VI) to compare the g value of the Planet.

    gPanet=G(16MEarth)(2rEarth)2=4(GMEarthrEarth2)=4g        (VII)

Conclusion:

Therefore, the acceleration due to gravity on the surface of planet Tungsten is 4g_.

(b)

To determine

The period of rotation of the Planet.

(b)

Expert Solution
Check Mark

Answer to Problem 68P

The period of rotation of the Planet is 69min_.

Explanation of Solution

A person standing at the pole experiences the full 4g of gravitational acceleration

Write the expression for the force acting on the person standing on the poles.

    F=NmgPlanet=0N=mgPlanet        (VIII)

Here, N is the normal force.

Write the expression for the force acting on the person standing on the equator.

    F=NmgPlanet=mv2rN=mgPlanetmv2rPlanet        (IX)

Here, v is the velocity.

Write the expression for v.

    v=2πrPlanetT        (X)

Here, T is the period of rotation.

Use equation (VIII) and (VII) in (IX) to solve for v.

    mg=mgPlanetmv2rPlanetmg=4mgmv2rPlanetv=3grPlanet        (XI)

Use equation (X) and (I) in (XI) to solve for T.

    2πrPlanetT=3grPlanetT=2πrPlanet3g=2π2rEarth3g        (XII)

Conclusion:

Substitute 6.37×106m for rEarth, 9.8m/s2 for g in equation (XII) to find T.

    T=2π2(6.37×106m)3(9.8m/s2)=4136s=69min

Therefore, the period of rotation of the Planet is 69min_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A ball is tied to one end of a string. The other end of the string is fixed. The ball is set in motion around a vertical circle without friction. At the top of the circle, the ball has a speed of ; = √√ Rg, as shown in the figure. At what angle should the string be cut so that the ball will travel through the center of the circle? The path after string is cut R
(a) A luggage carousel at an airport has the form of a section of a large cone, steadily rotating about its vertical axis. Its metallic surface slopes downward toward the outside, making an angle of 24.5° with the horizontal. A 30.0-kg piece of luggage is placed on the carousel, 7.46 m from the axis of rotation. The travel bag goes around once in 37.5 s. Calculate the magnitude of the force of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. N (b) The drive motor is shifted to turn the carousel at a higher constant rate of rotation, and the piece of luggage is bumped to a position 7.94 m from the axis of rotation. The bag is on the verge of slipping as it goes around once every 30.5 s. Calculate the coefficient of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the…
(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.78 x 104 m/s relative to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.) Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. m/s (b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 x 104 m/s from a point on Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of 4.10 x 10 m/s relative…

Chapter 5 Solutions

College Physics, Volume 1

Ch. 5 - Prob. 5QCh. 5 - Prob. 6QCh. 5 - Prob. 7QCh. 5 - What force makes it possible for a car to move...Ch. 5 - Prob. 9QCh. 5 - Prob. 10QCh. 5 - Prob. 11QCh. 5 - Prob. 12QCh. 5 - Prob. 13QCh. 5 - Prob. 14QCh. 5 - Prob. 15QCh. 5 - Prob. 16QCh. 5 - Prob. 17QCh. 5 - Prob. 18QCh. 5 - Plutos mass. In 1978, it was discovered that Pluto...Ch. 5 - Prob. 1PCh. 5 - Prob. 2PCh. 5 - Prob. 3PCh. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - Prob. 6PCh. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - Prob. 9PCh. 5 - Prob. 10PCh. 5 - A compact disc spins at 2.5 revolutions per...Ch. 5 - Prob. 12PCh. 5 - Prob. 13PCh. 5 - Prob. 14PCh. 5 - Prob. 15PCh. 5 - Consider the motion of a rock tied to a string of...Ch. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - Prob. 20PCh. 5 - Prob. 21PCh. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Prob. 25PCh. 5 - Prob. 26PCh. 5 - Prob. 27PCh. 5 - Prob. 29PCh. 5 - Consider a Ferris wheel in which the chairs hang...Ch. 5 - Prob. 31PCh. 5 - Prob. 32PCh. 5 - Prob. 33PCh. 5 - Prob. 34PCh. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - Prob. 40PCh. 5 - Prob. 41PCh. 5 - Prob. 42PCh. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - Prob. 45PCh. 5 - Prob. 46PCh. 5 - Prob. 47PCh. 5 - Prob. 48PCh. 5 - Prob. 50PCh. 5 - Prob. 51PCh. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - Prob. 55PCh. 5 - Prob. 56PCh. 5 - Prob. 57PCh. 5 - Prob. 58PCh. 5 - Prob. 59PCh. 5 - Prob. 60PCh. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Prob. 63PCh. 5 - Prob. 64PCh. 5 - Prob. 65PCh. 5 - Prob. 66PCh. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - Prob. 70PCh. 5 - Prob. 71PCh. 5 - Prob. 72PCh. 5 - A rock of mass m is tied to a string of length L...Ch. 5 - Prob. 74PCh. 5 - Prob. 75PCh. 5 - Prob. 76PCh. 5 - Prob. 77P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY