College Physics, Volume 1
2nd Edition
ISBN: 9781133710271
Author: Giordano
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 12P
To determine
The minimum radius of curvature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
When a fighter pilot makes a very quick turn, he experiences a centripetal acceleration. When this acceleration is greater than about 4 × g the pilot will usually lose consciousness (“black out”). Consider a pilot flying at a speed of 950 m/s who wants to make a very sharp turn. What is the minimum radius of curvature that he can take without blacking out?
You're designing a highway so that the maximum centripetal acceleration on a curve is no more than 1.1 m/s2 .
What is the minimum curvature radius to accommodate a 100 km/h maximum speed?
Express your answer to two significant figures and include the appropriate units.
You're designing a highway so that the maximum centripetal acceleration on a curve is no more than 1.7 m/s2. What is the minimum curvature radius to accommodate a 52-km/h maximum speed? Give your answer in meters
I know the formula involves a= v^2/r and we get r by itself; and then, we are to find minimum curvature radius. My question has to do with a conversion of 52 km to meters, and yes, km=1000 m. Can you help me to conceptualize (52 km/h)^2 to (14.4 m/s)^2 better?
Chapter 5 Solutions
College Physics, Volume 1
Ch. 5.1 - Velocity and Acceleration in Circular Motion...Ch. 5.1 - Prob. 5.2CCCh. 5.2 - Prob. 5.3CCCh. 5.3 - Prob. 5.5CCCh. 5.4 - Prob. 5.6CCCh. 5.4 - Prob. 5.7CCCh. 5 - Prob. 1QCh. 5 - Prob. 2QCh. 5 - Prob. 3QCh. 5 - Consider the Cavendish experiment in Figure 5.22....
Ch. 5 - Prob. 5QCh. 5 - Prob. 6QCh. 5 - Prob. 7QCh. 5 - What force makes it possible for a car to move...Ch. 5 - Prob. 9QCh. 5 - Prob. 10QCh. 5 - Prob. 11QCh. 5 - Prob. 12QCh. 5 - Prob. 13QCh. 5 - Prob. 14QCh. 5 - Prob. 15QCh. 5 - Prob. 16QCh. 5 - Prob. 17QCh. 5 - Prob. 18QCh. 5 - Plutos mass. In 1978, it was discovered that Pluto...Ch. 5 - Prob. 1PCh. 5 - Prob. 2PCh. 5 - Prob. 3PCh. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - Prob. 6PCh. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - Prob. 9PCh. 5 - Prob. 10PCh. 5 - A compact disc spins at 2.5 revolutions per...Ch. 5 - Prob. 12PCh. 5 - Prob. 13PCh. 5 - Prob. 14PCh. 5 - Prob. 15PCh. 5 - Consider the motion of a rock tied to a string of...Ch. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - Prob. 20PCh. 5 - Prob. 21PCh. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Prob. 25PCh. 5 - Prob. 26PCh. 5 - Prob. 27PCh. 5 - Prob. 29PCh. 5 - Consider a Ferris wheel in which the chairs hang...Ch. 5 - Prob. 31PCh. 5 - Prob. 32PCh. 5 - Prob. 33PCh. 5 - Prob. 34PCh. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - Prob. 40PCh. 5 - Prob. 41PCh. 5 - Prob. 42PCh. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - Prob. 45PCh. 5 - Prob. 46PCh. 5 - Prob. 47PCh. 5 - Prob. 48PCh. 5 - Prob. 50PCh. 5 - Prob. 51PCh. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - Prob. 55PCh. 5 - Prob. 56PCh. 5 - Prob. 57PCh. 5 - Prob. 58PCh. 5 - Prob. 59PCh. 5 - Prob. 60PCh. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Prob. 63PCh. 5 - Prob. 64PCh. 5 - Prob. 65PCh. 5 - Prob. 66PCh. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - Prob. 70PCh. 5 - Prob. 71PCh. 5 - Prob. 72PCh. 5 - A rock of mass m is tied to a string of length L...Ch. 5 - Prob. 74PCh. 5 - Prob. 75PCh. 5 - Prob. 76PCh. 5 - Prob. 77P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P3.31 represents the total acceleration of a particle moving clockwise in a circle of radius 2.50 m at a certain instant of time. For that instant, find (a) the radial acceleration of the particle, (b) the speed of the particle, and (c) its tangential acceleration.arrow_forwardWhich of the following is impossible for a car moving in a circular path? Assume that the car is never at rest. (a) The car has tangential acceleration but no centripetal acceleration. (b) The car has centripetal acceleration but no tangential acceleration. (c) The car has both centripetal acceleration and tangential acceleration.arrow_forwardA hang glider is traveling at a speed of 12 m/s when it enters a horizontal turn with a radius of 10 m. What is the acceleration (in m/s2) of the hang glider, and If the hang glider (with its pilot) has a mass of 120 kg, what is the centripetal force on the glider (in N)?arrow_forward
- An Aston Martin V8 Vantage sports car has a "lateral acceleration" of 8 m/s?. This is the maximum centripetal acceleration the car can sustain without skidding out of a curved path. If the car is traveling at a constant 43 m/s on level ground, what is the radius R of the tightest unbanked curve it can negotiate?arrow_forwardWhat is the minimum radius at which an airplane flying at 143.6 m/s can make a U-turn if its centripetal acceleration is NOT to exceed 2.3 m/s??arrow_forwardA vehicle moves along a highway with a speed of 25 m/s. In a curve with a radius of 1.3 km. What's the acceleration of the car? Which should be the speed to reduce this acceleration by 30%?arrow_forward
- A car is moving at 30 m/sec on a circular path with a radius of 150 meters, Find the time to finish one complete circle. Find the centripetal acceleration of the car. If the acceleration must not exceed 40 % of the gravitational acceleration, what must be the speed limit of the car?arrow_forwardA runner taking part in the 200 m dash must run around the end of a track that has a circular arc with a radius of curvature of 35 m. If he completes the 200 m dash in 24.2 s and runs at constant speed throughout the race, what is the magnitude of his centripetal acceleration (in m/s2) as he runs the curved portion of the track?arrow_forwardSuppose a NASCAR race car rounds one end of the Martinsville Speedway. This end of the track is a turn with a radius of approximately 57.0 m. If the track is completely flat and the race car is traveling at a constant 33.5 m/s (about 75 mph) around the turn, what is the race car's centripetal (radial) acceleration? centripetal acceleration: m/s? Which force is responsible for the centripetal acceleration in this case? weight gravity friction normal What is the minimum coefficient of static friction between the race car's tires and the track necessary to keep the car from skidding into the wall on the outside of the turn? coefficient of static friction:arrow_forward
- In a vertical dive, a peregrine falcon can accelerate at 0.6 times the free-fall acceleration g (that is, at 0.6g) in reaching a speed of about 103 m/s. If a falcon pulls out of a dive into a circular arc at this speed and can sustain a radial acceleration of 0.6g, what is the radius R of the turn?arrow_forwardMedical testing has established that the maximum acceleration a pilot can be subjected to without losing consciousness is approximately 5.00g. A pilot can avoid “blackout” at accelerations up to approximately 9.00g by wearing special “g-suits” that help keep blood pressure in the brain at a sufficient level. What is the minimum safe radius of curvature for an unprotected pilot flying an F-15 in a horizontal circular loop at 658 km/h?arrow_forwardIn a vertical dive, a peregrine falcon can accelerate at 0.6 times the free-fall acceleration g (that is, at 0.6g) in reaching a speed of about 105 m/s. If a falcon pulls out of a dive into a circular arc at this speed and can sustain a radial acceleration of 0.6g, what is the minimum radius R of the turn?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY