The mass of compound is given. By using the mass, the number of phosphorous atoms present in each of the compound given in exercise 52 is to be determined. Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons. Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound. The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it. The amount of substance containing 12 g of pure carbon is called a mole. One mole of atoms always contains 6 .022 × 10 23 molecules. The number of molecules in one mole is also called Avogadro’s number . To determine : The number of phosphorous ( P ) atoms in 1 .00 g of P 4 O 6 .
The mass of compound is given. By using the mass, the number of phosphorous atoms present in each of the compound given in exercise 52 is to be determined. Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons. Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound. The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it. The amount of substance containing 12 g of pure carbon is called a mole. One mole of atoms always contains 6 .022 × 10 23 molecules. The number of molecules in one mole is also called Avogadro’s number . To determine : The number of phosphorous ( P ) atoms in 1 .00 g of P 4 O 6 .
Solution Summary: The author explains the atomic mass and molar mass of a compound. The number of molecules in one mole is also called Avogadro's number.
Definition Definition Number of atoms/molecules present in one mole of any substance. Avogadro's number is a constant. Its value is 6.02214076 × 10 23 per mole.
Chapter 5, Problem 62E
(a)
Interpretation Introduction
Interpretation: The mass of compound is given. By using the mass, the number of phosphorous atoms present in each of the compound given in exercise 52 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of atoms always contains
6.022×1023 molecules. The number of molecules in one mole is also called Avogadro’s number.
To determine: The number of phosphorous
(P) atoms in
1.00g of
P4O6.
(b)
Interpretation Introduction
Interpretation: The mass of compound is given. By using the mass, the number of phosphorous atoms present in each of the compound given in exercise 52 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of atoms always contains
6.022×1023 molecules. The number of molecules in one mole is also called Avogadro’s number.
To determine: The number of phosphorous
(P) atoms in
1.00g of
Ca3(PO4)2.
(c)
Interpretation Introduction
Interpretation: The mass of compound is given. By using the mass, the number of phosphorous atoms present in each of the compound given in exercise 52 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of atoms always contains
6.022×1023 molecules. The number of molecules in one mole is also called Avogadro’s number.
To determine: The number of phosphorous
(P) atoms in
1.00g of
Na2HPO4.
1. Give stereochemical (Fischer projection) formulas for all (but no extras) the
stereoisomers that could theoretically form during the reduction of
a. the carbonyl group of 2-methyl-3--pentanone
b. both carbonyl groups of 2,4-pentanedione (careful!)
2. Predict the products of the reduction of O=CCH2CH2CH2C=O with
a. LiAlH4
b. NaBH4
CH3
OH
Which of the following compounds can be synthesized using one reaction from any alkene, as a major product? If it can be synthesized, propose a route, and you may use any other starting materials, reagents and solvents as needed. If you do not think that it can be synthesized as a major product from an alkene, explain in detail why.