Concept explainers
Consider the following unbalanced equation:
What masses of calcium sulfate and phosphoric acid can be produced from the reaction of 1.0 kg calcium phosphate with 1.0 kg concentrated sulfuric acid (98% H2SO4 by mass)?
Interpretation: The amount of calcium sulfate and phosphoric acid that can be produced from the stated reaction is to be calculated.
Concept introduction: The mass of a substance can be obtained by using the number of moles of the substance present and its molar mass. The formula used to calculate the mass of a given substance is,
To determine: The mass of Calcium sulfate and phosphoric acid that can be formed by the stated reaction.
Answer to Problem 118E
The mass of calcium sulfate and phosphoric acid formed is
Explanation of Solution
To determine: The balanced form of the stated chemical equation.
According to the law of conservation of mass, mass can neither be created nor destroyed. The mass of reactants is equal to the mass of products formed. Therefore a chemical equation, having lesser number of moles of an element on either side of a reaction, is balanced using appropriate numerical coefficients to satisfy the law of conservation of mass.
The given reaction is,
Adding the coefficient
Adding the coefficient
Given
The balanced chemical reaction is,
The given mass of
The given mass of concentrated
The given amount of concentrated sulfuric acid is given to have
Therefore, the mass of sulfuric acid
The molar mass of
The molar mass of
Formula
The number of moles of a substance is calculated by the formula,
Substitute the value of the given mass and the molar mass of
According to the stated reaction,
The moles of
Therefore, some amount of
According to the stated reaction,
The molar mass of
The mass of a substance is calculated by the formula,
Substitute the value of the number of moles of
Given
The balanced chemical reaction is,
According to the stated reaction,
The molar mass of
The mass of a substance is calculated by the formula,
Substitute the value of the number of moles of
The amount of calcium sulfate and phosphoric acid formed is
Want to see more full solutions like this?
Chapter 5 Solutions
Chemistry: An Atoms First Approach
- 2. Propose an efficient synthesis for each of the following transformations. Pay careful attention to both the regio and stereochemical outcomes. ¡ H H racemicarrow_forwardZeroth Order Reaction In a certain experiment the decomposition of hydrogen iodide on finely divided gold is zeroth order with respect to HI. 2HI(g) Au H2(g) + 12(9) Rate = -d[HI]/dt k = 2.00x104 mol L-1 s-1 If the experiment has an initial HI concentration of 0.460 mol/L, what is the concentration of HI after 28.0 minutes? 1 pts Submit Answer Tries 0/5 How long will it take for all of the HI to decompose? 1 pts Submit Answer Tries 0/5 What is the rate of formation of H2 16.0 minutes after the reaction is initiated? 1 pts Submit Answer Tries 0/5arrow_forwardangelarodriguezmunoz149@gmail.com Hi i need help with this question i am not sure what the right answers are.arrow_forward
- Saved v Question: I've done both of the graphs and generated an equation from excel, I just need help explaining A-B. Below is just the information I used to get the graphs obtain the graph please help. Prepare two graphs, the first with the percent transmission on the vertical axis and concentration on the horizontal axis and the second with absorption on the vertical axis and concentration on the horizontal axis. Solution # Unknown Concentration (mol/L) Transmittance Absorption 9.88x101 635 0.17 1.98x101 47% 0.33 2.95x101 31% 0.51 3.95x10 21% 0.68 4.94x10 14% 24% 0.85 0.62 A.) Give an equation that relates either the % transmission or the absorption to the concentration. Explain how you arrived at your equation. B.) What is the relationship between the percent transmission and the absorption? C.) Determine the concentration of the ironlll) salicylate in the unknown directly from the graph and from the best fit trend-line (least squares analysis) of the graph that yielded a straight…arrow_forwardDon't used Ai solutionarrow_forwardCalculate the differences between energy levels in J, Einstein's coefficients of estimated absorption and spontaneous emission and life time media for typical electronic transmissions (vnm = 1015 s-1) and vibrations (vnm = 1013 s-1) . Assume that the dipolar transition moments for these transactions are in the order of 1 D.Data: 1D = 3.33564x10-30 C m; epsilon0 = 8.85419x10-12 C2m-1J-1arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning