EBK THE COSMIC PERSPECTIVE
9th Edition
ISBN: 9780135161760
Author: Voit
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 61EAP
(a)
To determine
The speed and direction of a star in which this line appears at wavelength
(b)
To determine
The speed and direction of a star in which this line appears at wavelength
(c)
To determine
The speed and direction of a star in which this line appears at wavelength
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A main sequence star of mass, M, and radius, R, collapses to a white dwarf star with a radius 1.0% as big as the original star. If ω is the angular velocity of the original star, what is the angular velocity of the white dwarf star? Approximate the star to be a uniform solid sphere.
a.
20,000ω
b.
10,000ω
c.
50,000ω
d.
1,000ω
e.
5,000ω
A star's spectrum peaks at 500 nm. What is the surface temperature of the star?
O a. 5000 K
b.2000 K
C.5.8 x 106 K
d.5800 K
Why don’t we see hydrogen Balmer lines in the spectra of stars with temperatures of 45,000 K?
a.
There is no hydrogen in stars this hot.
b.
The stars are hot enough that most of the hydrogen is ionized and the atoms cannot absorb energy.
c.
These stars are so cool that nearly all of the electrons in the hydrogen atom are in the ground state.
d.
Stars of this temperature are too cool to produce an absorption spectrum.
e.
Stars of this temperature are too hot to produce an absorption spectrum.
Chapter 5 Solutions
EBK THE COSMIC PERSPECTIVE
Ch. 5 - Prob. 1VSCCh. 5 - Prob. 2VSCCh. 5 - Prob. 3VSCCh. 5 - Prob. 4VSCCh. 5 - Prob. 5VSCCh. 5 - Prob. 1EAPCh. 5 - Prob. 2EAPCh. 5 - Why do we say that light is an...Ch. 5 - Prob. 4EAPCh. 5 - List the different forms of light in order from...
Ch. 5 - Prob. 6EAPCh. 5 - Prob. 7EAPCh. 5 - What is electrical charge? Will an electron and a...Ch. 5 - Describe the phase changes of water as you heat...Ch. 5 - Prob. 10EAPCh. 5 - Prob. 11EAPCh. 5 - Prob. 12EAPCh. 5 - Prob. 13EAPCh. 5 - Prob. 14EAPCh. 5 - Prob. 15EAPCh. 5 - Prob. 16EAPCh. 5 - Does It Make Sense? Decide whether the statement...Ch. 5 - Does It Make Sense? Decide whether the statement...Ch. 5 - Prob. 19EAPCh. 5 - Prob. 20EAPCh. 5 - Prob. 21EAPCh. 5 - Prob. 22EAPCh. 5 - Prob. 23EAPCh. 5 - Does It Make Sense? Decide whether the statement...Ch. 5 - Does It Make Sense? Decide whether the statement...Ch. 5 - Does It Make Sense? Decide whether the statement...Ch. 5 - Prob. 27EAPCh. 5 - Prob. 28EAPCh. 5 - Prob. 29EAPCh. 5 - Prob. 30EAPCh. 5 - Prob. 31EAPCh. 5 - Prob. 32EAPCh. 5 - Prob. 33EAPCh. 5 - Prob. 34EAPCh. 5 - Prob. 35EAPCh. 5 - Choose the best answer to each of the following....Ch. 5 - Prob. 39EAPCh. 5 - Prob. 40EAPCh. 5 - Prob. 41EAPCh. 5 - Prob. 42EAPCh. 5 - Prob. 43EAPCh. 5 - Atomic Terminology Practice II. What are the...Ch. 5 - Prob. 45EAPCh. 5 - Prob. 46EAPCh. 5 - Prob. 47EAPCh. 5 - Prob. 48EAPCh. 5 - Prob. 49EAPCh. 5 - Prob. 50EAPCh. 5 - Prob. 51EAPCh. 5 - Human Wattage. A typical adult uses about 2500...Ch. 5 - Electric Bill. Your electric utility bill probably...Ch. 5 - Prob. 54EAPCh. 5 - Prob. 55EAPCh. 5 - Prob. 56EAPCh. 5 - Prob. 57EAPCh. 5 - Prob. 58EAPCh. 5 - Prob. 59EAPCh. 5 - Prob. 60EAPCh. 5 - Prob. 61EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why don’t we see hydrogen Balmer lines in the spectra of stars with temperatures of 3,200 K? a. There is no hydrogen in stars this cool. b. The stars are hot enough that most of the hydrogen is ionized and the atoms cannot absorb energy. c. These stars are so cool that nearly all of the hydrogen atoms are in the ground state. d. Stars of this temperature are too cool to produce an absorption spectrum. e. Stars of this temperature are too hot to produce an absorption spectrum.arrow_forwardAt what wavelength would a star radiate the greatest amount of energy if the star has a surface temperature of 60,000 K? a. 50 nm b. 500 nm c. 300 nm d. 1.8 × 1011 nm e. 180 nmarrow_forwardThe star Procyon A has an apparent magnitude of 0.38 and an absolute magnitude of 2.66 while the star Ross 128 has an apparent magnitude of 11.1 and an absolute magnitude of 13.5. Which star emits more energy? A. Procyon A O B. Ross 128 O C. They emit pretty much the same energy. D. There is insufficient information to tell.arrow_forward
- Three prominent spectral lines of wavelength a are observed at 499nm, 508nm, and 523nm. What is the most likely composition of this sample? Select one: О а. Helium b. Lithium Ос. Нydrogen O d. Chlorine е. Охудen f. Neonarrow_forwardB2. A spherical star is detected by an astronaut in a spacecraft at a distance z of 1.5×10¹2 kilometers. The star can be regarded as a blackbody with a temperature of 11,300 K. The radius r of the star is 3.5×106 kilometers. (a) Calculate the radiant exitance and the radiant intensity of the star. (b) Calculate the irradiance that can be detected by the astronaut. (c) The photodetector used by the astronaut in the spacecraft has a responsivity of 120 kV/W and an photosensitive area of 0.5 mm². Calculate the output voltage of the detector in the detection of the star. CAMINS +II+ Figure B2arrow_forwardIn hydrogen, the transition from level 2 to level 1 has a rest wavelength of 121.6 nm. Find the speed for a star in which this line appears at wavelength 120.5 mm. What about at 122.4 nm? Express your answer to three significant figures and include the appropriate units.arrow_forward
- Suppose we detect red photons at 656 nm emitted by electrons dropping from the n = 3 to the n = 2 orbital in hydrogen. The hydrogen is in an interstellar cloud at 5000k. If the cloud were heted to 10000 K, what would be the wavelength of the photons emitted by the transition? a) 328 nm b) 656 nm c) 1312 nm d) 658 nm e) 654 nmarrow_forwardIn order to form a black hole, a star must be about how much more massive than our Sun? a. Fifty times as massive b. Ten times as massive c. Twice as massive d. Twenty times as massive e. It actually must be less massive than our Sunarrow_forward2.9) Explain how astronomers might use spectroscopy to determine the composition and temperature of a star.arrow_forward
- B1arrow_forward1. The Sun radiates energy like a black body with temperature 5800 K. Use the Stefan-Boltzmann Law to calculate the Sun's Luminosity (which is the Sun's Surface Area times the Flux radiated per unit surface area. Use the following parameters: Sun's Radius = R = 6.96 x 1010 cm Stefan-Boltzmann Const = s = 5.67 x 10-5 ergs/cm2 K4 sSun's Temperature = T = 5800 K Formula for Luminosity: L = 4pR2 sT 4 What is the Sun's Luminosity? __________ ergs/sarrow_forward19. A hydrogen atom in excited energy state E24x 10" drops down to the ground state at energy level E 21.76 x 10"), giving off a photon. a. What is the energy of the emitted photon injoules? b. What is its wavelength? c. Based on the EM spectrum, what type of raciation is this?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning