Lecture- Tutorials for Introductory Astronomy
3rd Edition
ISBN: 9780321820464
Author: Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 5BIP
To determine
The time which most likely indicates the time when the Sun-like (G-spectral type) star was passing in front of the A-spectral type star.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
By please don't use Chatgpt will upvote and give handwritten solution
A collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that
∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ
Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.
A number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q(upper case). The signs of the charges are indicated explicitly such that
∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ
Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as
F⃗E=FE,xî
where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.
Chapter 5 Solutions
Lecture- Tutorials for Introductory Astronomy
Ch. 5 - Prob. 1HRPCh. 5 - Prob. 2HRPCh. 5 - Prob. 3HRPCh. 5 - Prob. 4HRPCh. 5 - Prob. 5HRPCh. 5 - Prob. 6HRPCh. 5 - Stars of the same spectral type have the same...Ch. 5 - Prob. 8HRPCh. 5 - Prob. 9HRPCh. 5 - Prob. 1STP
Ch. 5 - Prob. 2STPCh. 5 - Prob. 3STPCh. 5 - Prob. 4STPCh. 5 - Prob. 5STPCh. 5 - Prob. 6STPCh. 5 - Prob. 7STPCh. 5 - Prob. 1BIPCh. 5 - Prob. 2BIPCh. 5 - Prob. 3BIPCh. 5 - Prob. 4BIPCh. 5 - Prob. 5BIPCh. 5 - Prob. 6BIPCh. 5 - Prob. 7BIPCh. 5 - At which of the times you drew would you measure...Ch. 5 - Prob. 9BIPCh. 5 - Prob. 10BIPCh. 5 - Prob. 11BIPCh. 5 - As an extrasolar planet orbits around a star, the...Ch. 5 - Which object takes a greater amount of time to...Ch. 5 - At the instant shown in Figure 1, which direction...Ch. 5 - At the instant shown in Figure 1, which direction...Ch. 5 - In general, how does the direction the extrasolar...Ch. 5 - Figure 2 shows the extrasolar planet and star from...Ch. 5 - Prob. 7MOPCh. 5 - Prob. 8MOPCh. 5 - Prob. 9MOPCh. 5 - Prob. 10MOPCh. 5 - Prob. 11MOPCh. 5 - Prob. 12MOPCh. 5 - In which extrasolar planet system(s) (AD) is the...Ch. 5 - In which extrasolar planet system(s) (AD) would we...Ch. 5 - Which system (AD) has the extrasolar planet that...Ch. 5 - Two students are discussing their answers to...Ch. 5 - Match each graph (EH) with the extrasolar planet...Ch. 5 - Prob. 18MOPCh. 5 - Given the location marked with the dot on the...Ch. 5 - Prob. 1STEPCh. 5 - Prob. 2STEPCh. 5 - The Sun’s position in the Milky Way is shown in...Ch. 5 - Prob. 2MIPCh. 5 - We normally consider Deneb to be a bright but...Ch. 5 - Are the stars from Question 2 inside or outside...Ch. 5 - Prob. 5MIPCh. 5 - Are these Messier objects part of the Milky Way...Ch. 5 - Prob. 7MIPCh. 5 - Prob. 8MIPCh. 5 - Prob. 9MIPCh. 5 - Are the objects listed in Question 9 inside or...Ch. 5 - SagDEG is approximately 11,000 ly across. Is this...Ch. 5 - Within the Local Group, the two largest galaxies...Ch. 5 - Prob. 1GAPCh. 5 - Prob. 2GAPCh. 5 - Prob. 3GAPCh. 5 - Prob. 4GAPCh. 5 - Do the galaxies that you identified in Question 4...Ch. 5 - Prob. 6GAPCh. 5 - Prob. 7GAPCh. 5 - Prob. 8GAPCh. 5 - Prob. 9GAPCh. 5 - Prob. 10GAPCh. 5 - Prob. 11GAPCh. 5 - Prob. 12GAPCh. 5 - Prob. 13GAPCh. 5 - Where is the vast majority of mass in the solar...Ch. 5 - Two students are discussing their answers to...Ch. 5 - How do the orbital speeds of planets farther from...Ch. 5 - How does the gravitational force on a planet far...Ch. 5 - Complete the blanks in the sentences of the...Ch. 5 - Imagine you were able to add a very, very large...Ch. 5 - Prob. 7DAPCh. 5 - Prob. 8DAPCh. 5 - Prob. 9DAPCh. 5 - Astronomers were surprised when they saw the real...Ch. 5 - Prob. 11DAPCh. 5 - Prob. 12DAPCh. 5 - Based on your answers to Question 12, would you...Ch. 5 - Based on the MWG’s real rotation curve and your...Ch. 5 - Prob. 15DAPCh. 5 - Prob. 16DAPCh. 5 - Prob. 17DAPCh. 5 - Prob. 1LOPCh. 5 - Prob. 2LOPCh. 5 - Prob. 3LOPCh. 5 - Prob. 4LOPCh. 5 - Prob. 5LOPCh. 5 - Prob. 6LOPCh. 5 - Prob. 7LOPCh. 5 - Prob. 8LOPCh. 5 - Prob. 9LOPCh. 5 - Prob. 1MAPCh. 5 - Prob. 2MAPCh. 5 - Prob. 3MAPCh. 5 - Prob. 4MAPCh. 5 - Prob. 5MAPCh. 5 -
One way to try to understand and envision the...Ch. 5 -
One way to try to understand and envision the...Ch. 5 - Prob. 8MAPCh. 5 -
One way to try to understand and envision the...Ch. 5 -
One way to try to understand and envision the...Ch. 5 -
One way to try to understand and envision the...Ch. 5 -
One way to try to understand and envision the...Ch. 5 -
The balloon analogy is a helpful way to think...Ch. 5 - Prob. 1HUPCh. 5 - Consider the small section of the universe...Ch. 5 - Consider the small section of the universe...Ch. 5 - Prob. 4HUPCh. 5 - Consider the small section of the universe...Ch. 5 - Prob. 6HUPCh. 5 - The relationship you described in Questions 4 and...Ch. 5 - Prob. 8HUPCh. 5 - Prob. 9HUPCh. 5 - Prob. 10HUPCh. 5 - Prob. 11HUPCh. 5 - Complete the sentence below using the words...Ch. 5 - Prob. 13HUPCh. 5 - Prob. 14HUPCh. 5 - Prob. 16HUPCh. 5 - Prob. 17HUPCh. 5 - Prob. 18HUPCh. 5 - Prob. 19HUPCh. 5 - Prob. 20HUPCh. 5 - The two drawings below represent the same group of...Ch. 5 - Prob. 2EXPCh. 5 - Prob. 3EXPCh. 5 - The two drawings below represent the same group of...Ch. 5 - Prob. 5EXPCh. 5 - The two drawings below represent the same group of...Ch. 5 - The two drawings below represent the same group of...Ch. 5 - The two drawings below represent the same group of...Ch. 5 - The two drawings below represent the same group of...Ch. 5 - The two drawings below represent the same group of...Ch. 5 - The two drawings below represent the same group of...Ch. 5 - The two drawings below represent the same group of...Ch. 5 - Prob. 1ELDPCh. 5 - When the universe was 4 billion years old, Galaxy...Ch. 5 - Prob. 3ELDPCh. 5 - Prob. 4ELDPCh. 5 - Prob. 5ELDPCh. 5 - Prob. 6ELDPCh. 5 - Prob. 7ELDPCh. 5 - Prob. 8ELDPCh. 5 - Prob. 9ELDPCh. 5 - When the universe was 4 billion years old, Galaxy...Ch. 5 - Consider the discussion between two students...Ch. 5 - Diagrams A and B below each represent a different...Ch. 5 - Diagrams A and B below each represent a different...Ch. 5 - Diagrams A and B below each represent a different...Ch. 5 - Prob. 4THPCh. 5 - Diagrams A and B below each represent a different...Ch. 5 - Consider the three diagrams (C, D, and E) shown...Ch. 5 - Consider the three diagrams (C, D, and E) shown...Ch. 5 - Imagine you could watch the history of the...Ch. 5 - Prob. 9THPCh. 5 - Prob. 10THPCh. 5 - Look at Diagram A again. Next to Diagram A, make a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=arrow_forwardFour point charges of equal magnitude Q = 55 nC are placed on the corners of a rectangle of sides D1 = 27 cm and D2 = 11cm. The charges on the left side of the rectangle are positive while the charges on the right side of the rectangle are negative. Use a coordinate system where the positive y-direction is up and the positive x-direction is to the right. A. Which of the following represents a free-body diagram for the charge on the lower left hand corner of the rectangle? B. Calculate the horizontal component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fx = __________________________________________NC. Calculate the vertical component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fy = __________________________________________ND. Calculate the magnitude of the…arrow_forwardPoint charges q1=50.0μC and q2=-35μC are placed d1=1.0m apart, as shown. A. A third charge, q3=25μC, is positioned somewhere along the line that passes through the first two charges, and the net force on q3 is zero. Which statement best describes the position of this third charge?1) Charge q3 is to the right of charge q2. 2) Charge q3 is between charges q1 and q2. 3) Charge q3 is to the left of charge q1. B. What is the distance, in meters, between charges q1 and q3? (Your response to the previous step may be used to simplify your solution.)Give numeric value.d2 = __________________________________________mC. Select option that correctly describes the change in the net force on charge q3 if the magnitude of its charge is increased.1) The magnitude of the net force on charge q3 would still be zero. 2) The effect depends upon the numeric value of charge q3. 3) The net force on charge q3 would be towards q2. 4) The net force on charge q3 would be towards q1. D. Select option that…arrow_forward
- The magnitude of the force between a pair of point charges is proportional to the product of the magnitudes of their charges and inversely proportional to the square of their separation distance. Four distinct charge-pair arrangements are presented. All charges are multiples of a common positive charge, q. All charge separations are multiples of a common length, L. Rank the four arrangements from smallest to greatest magnitude of the electric force.arrow_forwardA number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q (upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forwardA collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.arrow_forward
- In Dark Souls 3 you can kill the Ancient Wyvern by dropping on its head from above it. Let’s say you jump off the ledge with an initial velocity of 3.86 mph and spend 1.72 s in the air before hitting the wyvern’s head. Assume the gravity is the same as that of Earth and upwards is the positive direction. Also, 1 mile = 1609 m. A) How high up is the the ledge you jumped from as measured from the wyvern’s head? B) What is your velocity when you hit the wyvern?arrow_forwardA conducting sphere is mounted on an insulating stand, and initially it is electrically neutral. A student wishes to induce a charge distribution similar to what is shown here. The student may connect the sphere to ground or leave it electrically isolated. The student may also place a charged insulated rod near to the sphere without touching it. Q. The diagrams below indicate different choices for whether or not to include a ground connection as well as the sign of the charge on and the placement of an insulating rod. Choose a diagram that would produce the desired charge distribution. (If there are multiple correct answers, you need to select only one of them.)arrow_forwardA person is making pancakes and tries to flip one in the pan. The person is holding the pan a distance y0 = 1.10 m above the ground when they launch the pancake. The pancake just barely touches the ceiling, which is at a height y = 2.47 m above the ground. A) What must be the initial velocity of the pancake to reach that height? B) This person, shocked that they almost hit the ceiling, does not catch it on the way down and the pancake hits the floor. Assuming up as the positive direction, what is the velocity of the pancake when it hits the floor, ruining breakfast and this person’s day?arrow_forward
- One of Spider-Man’s less talked about powers is that he can jump really high. In the comics Spider-Man can jump upwards 3 stories. A) If Spider-Man leaves the ground at 14.3 m/s, how high can he get? y= B) If Spider-Man jumps directly upwards with the initial velocity used above and then returns to the ground, what total amount of time does he spend airborn? t=arrow_forwardAn insulating rod is positively charged, and an electrically neutral conducting sphere is mounted on an insulating stand. The rod is brought near to the sphere on the right, but they never actually touch. Q. Select the image that best represents the resulting charge distribution on the conducting sphere.arrow_forwardThis is a multi-part problem. For each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON