Lecture- Tutorials for Introductory Astronomy
3rd Edition
ISBN: 9780321820464
Author: Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5, Problem 17MOP
Match each graph (E−H) with the extrasolar planet systems (A−D) from Figure 3. Explainyour reasoning.
Extrasolar Planet System A:
Extrasolar Planet System B:
Extrasolar Planet System C:
Extrasolar Planet System D:
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule04:51
Students have asked these similar questions
Using MBH
=
6.6 × 10 Mo, calculate the below.
a. Find radius of the Schwarzschild sphere (Schwarzschild radius Rs). You
can calculated from the appropriate formula or just use the fact that for
an object of 1 solar mass Rs = 3 km.
b. Express Rs in km, in AU, in parsecs.
c. Using the distance to M87 and your result above, find angular radius of
the SMBH (Schwarzschild radius). Express it in arcseconds (") and micro-
arcseconds (pas)
d. Take the radius of Pluto's orbit equal to 40 AU and find its angular size
(in micro-arcseconds, pas) at the distance of M87.
Please please solve accurate and exact answer please sir it's very important please
The figure below shows the spectra of two galaxies A and B.
Please can i get help with this questions below:
1. Which of these galaxies has ongoing star formation? How can you tell?2. One of these galaxies has Hubble type E3 while the other is SBb. Which is which? What does the 3 inE3 tell you about the galaxy? What does the SB in SBb tell you about the galaxy?3. What effects would dust have on the two spectra?4. Which galaxy would you expect to have more far-infrared emission? Expl
Chapter 5 Solutions
Lecture- Tutorials for Introductory Astronomy
Ch. 5 - Prob. 1HRPCh. 5 - Prob. 2HRPCh. 5 - Prob. 3HRPCh. 5 - Prob. 4HRPCh. 5 - Prob. 5HRPCh. 5 - Prob. 6HRPCh. 5 - Stars of the same spectral type have the same...Ch. 5 - Prob. 8HRPCh. 5 - Prob. 9HRPCh. 5 - Prob. 1STP
Ch. 5 - Prob. 2STPCh. 5 - Prob. 3STPCh. 5 - Prob. 4STPCh. 5 - Prob. 5STPCh. 5 - Prob. 6STPCh. 5 - Prob. 7STPCh. 5 - Prob. 1BIPCh. 5 - Prob. 2BIPCh. 5 - Prob. 3BIPCh. 5 - Prob. 4BIPCh. 5 - Prob. 5BIPCh. 5 - Prob. 6BIPCh. 5 - Prob. 7BIPCh. 5 - At which of the times you drew would you measure...Ch. 5 - Prob. 9BIPCh. 5 - Prob. 10BIPCh. 5 - Prob. 11BIPCh. 5 - As an extrasolar planet orbits around a star, the...Ch. 5 - Which object takes a greater amount of time to...Ch. 5 - At the instant shown in Figure 1, which direction...Ch. 5 - At the instant shown in Figure 1, which direction...Ch. 5 - In general, how does the direction the extrasolar...Ch. 5 - Figure 2 shows the extrasolar planet and star from...Ch. 5 - Prob. 7MOPCh. 5 - Prob. 8MOPCh. 5 - Prob. 9MOPCh. 5 - Prob. 10MOPCh. 5 - Prob. 11MOPCh. 5 - Prob. 12MOPCh. 5 - In which extrasolar planet system(s) (AD) is the...Ch. 5 - In which extrasolar planet system(s) (AD) would we...Ch. 5 - Which system (AD) has the extrasolar planet that...Ch. 5 - Two students are discussing their answers to...Ch. 5 - Match each graph (EH) with the extrasolar planet...Ch. 5 - Prob. 18MOPCh. 5 - Given the location marked with the dot on the...Ch. 5 - Prob. 1STEPCh. 5 - Prob. 2STEPCh. 5 - The Sun’s position in the Milky Way is shown in...Ch. 5 - Prob. 2MIPCh. 5 - We normally consider Deneb to be a bright but...Ch. 5 - Are the stars from Question 2 inside or outside...Ch. 5 - Prob. 5MIPCh. 5 - Are these Messier objects part of the Milky Way...Ch. 5 - Prob. 7MIPCh. 5 - Prob. 8MIPCh. 5 - Prob. 9MIPCh. 5 - Are the objects listed in Question 9 inside or...Ch. 5 - SagDEG is approximately 11,000 ly across. Is this...Ch. 5 - Within the Local Group, the two largest galaxies...Ch. 5 - Prob. 1GAPCh. 5 - Prob. 2GAPCh. 5 - Prob. 3GAPCh. 5 - Prob. 4GAPCh. 5 - Do the galaxies that you identified in Question 4...Ch. 5 - Prob. 6GAPCh. 5 - Prob. 7GAPCh. 5 - Prob. 8GAPCh. 5 - Prob. 9GAPCh. 5 - Prob. 10GAPCh. 5 - Prob. 11GAPCh. 5 - Prob. 12GAPCh. 5 - Prob. 13GAPCh. 5 - Where is the vast majority of mass in the solar...Ch. 5 - Two students are discussing their answers to...Ch. 5 - How do the orbital speeds of planets farther from...Ch. 5 - How does the gravitational force on a planet far...Ch. 5 - Complete the blanks in the sentences of the...Ch. 5 - Imagine you were able to add a very, very large...Ch. 5 - Prob. 7DAPCh. 5 - Prob. 8DAPCh. 5 - Prob. 9DAPCh. 5 - Astronomers were surprised when they saw the real...Ch. 5 - Prob. 11DAPCh. 5 - Prob. 12DAPCh. 5 - Based on your answers to Question 12, would you...Ch. 5 - Based on the MWG’s real rotation curve and your...Ch. 5 - Prob. 15DAPCh. 5 - Prob. 16DAPCh. 5 - Prob. 17DAPCh. 5 - Prob. 1LOPCh. 5 - Prob. 2LOPCh. 5 - Prob. 3LOPCh. 5 - Prob. 4LOPCh. 5 - Prob. 5LOPCh. 5 - Prob. 6LOPCh. 5 - Prob. 7LOPCh. 5 - Prob. 8LOPCh. 5 - Prob. 9LOPCh. 5 - Prob. 1MAPCh. 5 - Prob. 2MAPCh. 5 - Prob. 3MAPCh. 5 - Prob. 4MAPCh. 5 - Prob. 5MAPCh. 5 -
One way to try to understand and envision the...Ch. 5 -
One way to try to understand and envision the...Ch. 5 - Prob. 8MAPCh. 5 -
One way to try to understand and envision the...Ch. 5 -
One way to try to understand and envision the...Ch. 5 -
One way to try to understand and envision the...Ch. 5 -
One way to try to understand and envision the...Ch. 5 -
The balloon analogy is a helpful way to think...Ch. 5 - Prob. 1HUPCh. 5 - Consider the small section of the universe...Ch. 5 - Consider the small section of the universe...Ch. 5 - Prob. 4HUPCh. 5 - Consider the small section of the universe...Ch. 5 - Prob. 6HUPCh. 5 - The relationship you described in Questions 4 and...Ch. 5 - Prob. 8HUPCh. 5 - Prob. 9HUPCh. 5 - Prob. 10HUPCh. 5 - Prob. 11HUPCh. 5 - Complete the sentence below using the words...Ch. 5 - Prob. 13HUPCh. 5 - Prob. 14HUPCh. 5 - Prob. 16HUPCh. 5 - Prob. 17HUPCh. 5 - Prob. 18HUPCh. 5 - Prob. 19HUPCh. 5 - Prob. 20HUPCh. 5 - The two drawings below represent the same group of...Ch. 5 - Prob. 2EXPCh. 5 - Prob. 3EXPCh. 5 - The two drawings below represent the same group of...Ch. 5 - Prob. 5EXPCh. 5 - The two drawings below represent the same group of...Ch. 5 - The two drawings below represent the same group of...Ch. 5 - The two drawings below represent the same group of...Ch. 5 - The two drawings below represent the same group of...Ch. 5 - The two drawings below represent the same group of...Ch. 5 - The two drawings below represent the same group of...Ch. 5 - The two drawings below represent the same group of...Ch. 5 - Prob. 1ELDPCh. 5 - When the universe was 4 billion years old, Galaxy...Ch. 5 - Prob. 3ELDPCh. 5 - Prob. 4ELDPCh. 5 - Prob. 5ELDPCh. 5 - Prob. 6ELDPCh. 5 - Prob. 7ELDPCh. 5 - Prob. 8ELDPCh. 5 - Prob. 9ELDPCh. 5 - When the universe was 4 billion years old, Galaxy...Ch. 5 - Consider the discussion between two students...Ch. 5 - Diagrams A and B below each represent a different...Ch. 5 - Diagrams A and B below each represent a different...Ch. 5 - Diagrams A and B below each represent a different...Ch. 5 - Prob. 4THPCh. 5 - Diagrams A and B below each represent a different...Ch. 5 - Consider the three diagrams (C, D, and E) shown...Ch. 5 - Consider the three diagrams (C, D, and E) shown...Ch. 5 - Imagine you could watch the history of the...Ch. 5 - Prob. 9THPCh. 5 - Prob. 10THPCh. 5 - Look at Diagram A again. Next to Diagram A, make a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
16. A 200 g mass attached to a horizontal spring oscillates at a frequency of 2.0 Hz. At , the mass is at and ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to th...
University Physics Volume 1
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
50. (I) Find the center of mass of the three-mass system shown in Fig. 7-37 relative to the 1.00-kg mass.
Physics: Principles with Applications
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
A wire carries 6.71 A. You form it into a single-turn circular loop and measure a magnetic field of 42.8 T at t...
Essential University Physics: Volume 2 (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- I am trying to calculate the gravitational mass (in solar masses) I have the formula M= V^2 R / G (4.31 x 10^-6) The paperwork says our numbers should be big but I am coming up with .002 etc. What am I doing wrong?arrow_forwardWhite Dwarf Size II. The white dwarf, Sirius B, contains 0.98 solar mass, and its density is about 2 x 106 g/cm?. Find the radius of the white dwarf in km to three significant digits. (Hint: Density = mass/volume, and the volume of a 4 sphere is Tr.) 3 km Compare your answer with the radii of the planets listed in the Table A-10. Which planet is this white dwarf is closely equal to in size? I Table A-10 I Properties of the Planets ORBITAL PROPERTIES Semimajor Axis (a) Orbital Period (P) Average Orbital Velocity (km/s) Orbital Inclination Planet (AU) (106 km) (v) (days) Eccentricity to Ecliptic Mercury 0.387 57.9 0.241 88.0 47.9 0.206 7.0° Venus 0.723 108 0.615 224.7 35.0 0.007 3.4° Earth 1.00 150 1.00 365.3 29.8 0.017 Mars 1.52 228 1.88 687.0 24.1 0.093 1.8° Jupiter 5.20 779 11.9 4332 13.1 0.049 1.30 Saturn 9.58 1433 29.5 10,759 9.7 0.056 2.5° 30,799 60,190 Uranus 19.23 2877 84.3 6.8 0.044 0.8° Neptune * By definition. 30.10 4503 164.8 5.4 0.011 1.8° PHYSICAL PROPERTIES (Earth = e)…arrow_forwardInstruction: Complete the Venn Diagram by providing the similarities and differences of the Ptolemaic, Copernican and Tychonic model of the universe. lutalud (etnioq a S) (enioc a) bogotleog henoit200 falog 00) sbbiobua e boa (etriog 01 sbbtobijspe 1ele batdu beeb ert Ptolemaic Model mit n cku2 Copernican Model イm a.v Wilsutonu Vetniog Ot) (eniog (einioq 0t) (anicg a.c) oria callon aissage teerda Joerie sen ai 1sene tos leegCs Vlsienagstsiogiooni bns, wivits (etnioq s vhooqTuy bongieab isuelV enpiati eldsbee. bns- of mese jon 2sob l etno tromeiqmoo of mese ob aesU beau albejco sbbtobysre Inol gniesigllisuaiVanpizeb pniniviisuetv elds vese bne pritivG eol vese bns bsa of slsn as 2saU emelomo (stnioa dT8) baeu eldo sbbiobusre (einic ) (ainiog es r) d bebriemmo09i bos beweivebeben vd bisge)9 vd bevordA Isqionh Tychonic Modelarrow_forward
- 1. A distant galaxy has an apparent magnitude of 10 and is 4,000 kpc away. What is its absolute magnitude? (Round your answer to at least one decimal place.) The difference in absolute magnitude between two objects viewed from the same distance is related to their fluxes by the flux-magnitude relation. FA/FB= 2.51(MB − MA) 2. How does the absolute magnitude of this galaxy compare to the Milky Way (M = −21)?arrow_forwardI attempted to answer this question and I'm not sure what I am doing wrong. My formula says A.S. = 206265 (separation/distance from observer) I know to convert to the same units, so I ended up with 80 Million Km being 8 x 10 ^ -6 LY Could you please explain each step especially for the part that I got wrong for both A and B?arrow_forwardNo need to solve. Just formulate all the equation that can be seen in the diagram. Examples are Bx= B cos (- theta 1) By= B sin (- theta 2 )arrow_forward
- The Tully-Fischer method relies on being able to relate the mass of a galaxy to its rotation velocity. Stars in the outer-most regions of the Milky Way galaxy, located at a distance of 50 kpc from the galactic centre, are observed to orbit at a speed vrot determine the mass in the Milky Way that lies interior to 50 kpc. Express your answer in units of the Solar mass. 250 km s-1. Using Kepler's 3rd Law,arrow_forwardI need help with this questionarrow_forward1. Planet A has an orbital period of 12 years and radius that is 0.033 times the radius of the star. Calculate the fractional dip of the star brightness in the case that planet A is transiting. Give the answer as a number. Quote the formula you use and explain any assumptions you have to make. 2. Planet B has an orbital period of 1 year and is located closer to its star than planet A. You succeed in detecting planet B with the radial velocity technique as well! From this measurement you calculate a minimum mass of planet B to be 75% that of the Earth. (a) Since you detect the planet with both transit method and radial velocity method, what do you know about the inclination of the planetary system? (b) Given this inclination, estimate the true mass of planet B (in units of Earth mass). You do not need to do a detailed calculation, just explain the argument. 3. You also measure the radius of planet B to be the same as Earth, one Earth radius. (a) How does the density of planet B compare…arrow_forward
- EXPLAIN WHY PLEASE.arrow_forwardIgnore the part where it says Numbers My question is with what did they substitute r1 with?arrow_forwardTry Now ... .... Listed below are some distances from Earth to other objects in the Milky Way galaxy. Convert each distance to light-years. (Each of these distances is less than one light-year. For an added challenge, convert each distance to light minutes or light seconds.) 1. The distance from Earth to the Moon is about 384,400 km. How many light-years is this? 2. The distance from Earth to Mars is about 784,000,000 km. How many light-years is this? 3. The distance from Earth to Pluto is about 5,750,000,000 km. How many light-years is this?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY