(a)
Interpretation:
The general formula for an ionic compound formed by elements in the given groups should be determined and explained with an example.
Concept Introduction:
Ionic compounds are formed by attraction of positive and negative charge ions. An atom of element with high electronegativity can gain electron/s to form negative charge ions and an atom of element with low electronegativity can lose electron/s to form positive charge ions. These negative and positive charged ions combined to form ionic compounds.
Answer to Problem 5ALQ
General formula:
Example: NaCl, sodium chloride.
Explanation of Solution
Group 1 elements are alkaline metals, they can give one electron to form positive charged ion with charge + 1.
The general electronic configuration of group 1 elements is
Here, M represents the alkali metal.
Similarly, the general electronic configuration of group 7 or VII B(according to old IUPAC) elements is
Here, X represents the halogen.
The ionic compound should be neutral since, there is 1 positive and 1 negative charge, according to crisscross method, they combine in 1:1 ratio and the formula of ionic compound will be:
For example: The ionic compound formed by alkali metal sodium Na and halogen Cl will be NaCl and the name of compound will be sodium chloride.
(b)
Interpretation:
The general formula for an ionic compound formed by elements in the given groups should be determined and explained with an example.
Concept Introduction:
Ionic compounds are formed by attraction of positive and negative charge ions. An atom of element with high electronegativity can gain electron/s to form negative charge ions and an atom of element with low electronegativity can lose electron/s to form positive charge ions. These negative and positive charged ions combined to form ionic compounds.
Answer to Problem 5ALQ
General formula:
Example:
Explanation of Solution
Group 2 elements are alkaline earth metals, they can give two electrons to form positive charged ion with charge + 2.
The general electronic configuration of group 2 elements is
Here, M represents the alkali earth metal.
Similarly, the general electronic configuration of group 7 or VII B (according to old IUPAC) elements is
Here, X represents the halogen.
The ionic compound should be neutral since, there are2 positive chargesand 1 negative charge, according to crisscross method, 1 positive charged ion combines with 2 negative charged ions and the formula of ionic compound will be:
For example: The ionic compound formed by alkali earth metal magnesium Mg and halogen Cl will be
(c)
Interpretation:
The general formula for an ionic compound formed by elements in the given groups should be determined and explained with an example.
Concept Introduction:
Ionic compounds are formed by attraction of positive and negative charge ions. An atom of element with high electronegativity can gain electron/s to form negative charge ions and an atom of element with low electronegativity can lose electron/s to form positive charge ions. These negative and positive charged ions combined to form ionic compounds.
Answer to Problem 5ALQ
General formula:
Example:
Explanation of Solution
Group 1 elements are alkaline metals, they can give one electron to form positive charged ion with charge + 1.
The general electronic configuration of group 1 elements is
Here, M represents the alkali metal.
Similarly, elements in group 6 or VI B (according to old IUPAC) belongs to oxygen family. The general electronic configuration is
The formation of negatively charged ion will be as follows:
Here, Y represents the element from oxygen family.
The ionic compound should be neutral since, there is 1 positive chargeand 2 negative charges, according to crisscross method, 2 positive charged ions combines with 1 negative charged ion and the formula of ionic compound will be:
For example, the ionic compound formed between alkali metal Li and oxygen will be
(d)
Interpretation:
The general formula for an ionic compound formed by elements in the given groups should be determined and explained with an example.
Concept Introduction:
Ionic compounds are formed by attraction of positive and negative charge ions. An atom of element with high electronegativity can gain electron/s to form negative charge ions and an atom of element with low electronegativity can lose electron/s to form positive charge ions. These negative and positive charged ions combined to form ionic compounds.
Answer to Problem 5ALQ
General formula:
Example:
Explanation of Solution
Group 2 elements are alkaline earth metals, they can give two electrons to form positive charged ion with charge + 2.
The general electronic configuration of group 2 elements is
Here, M represents the alkali earth metal.
Similarly, elements in group 6 or VI B (according to old IUPAC) belongs to oxygen family. The general electronic configuration is
The formation of negatively charged ion will be as follows:
Here, Y represents the element from oxygen family.
The ionic compound should be neutral since, there are 2 positive and 2 negative charges, according to crisscross method, they combine in 1:1 ratio and the formula of ionic compound will be:
For example, the ionic compound formed between alkaline earth metal Mg and oxygen will be
Want to see more full solutions like this?
Chapter 5 Solutions
EBK INTRO.CHEMISTRY (NASTA EDITION)
- Don't used hand raitingarrow_forwardCHEM2323 Problem 2-24 Tt O e: ל Predict the product(s) of the following acid/base reactions. Draw curved arrows to show the formation and breaking of bonds. If the bonds needed are not drawn out, you should redraw them. + BF3 (a) (b) HI + (c) OH -BF Problem 2-25 Use curved arrows and a proton (H+) to draw the protonated form of the following Lewis bases. Before starting, add all missing lone pairs. (a) (b) :0: (c) N 1 CHEM2323 PS CH02 Name:arrow_forwardCHEM2323 Problem 2-26 Tt O PS CH02 Name: Use the curved-arrow formalism to show how the electrons flow in the resonance form on the left to give the one on the right. (Draw all lone pairs first) (a) NH2 NH2 + (b) Problem 2-27 Double bonds can also act like Lewis bases, sharing their electrons with Lewis acids. Use curved arrows to show how each of the following double bonds will react with H-Cl and draw the resulting carbocation. (a) H2C=CH2 (b) (c) Problem 2-28 Identify the most electronegative element in each of the following molecules: (a) CH2FCI F Problem 2-29 (b) FCH2CH2CH2Br (c) HOCH2CH2NH2 (d) CH3OCH2Li F 0 0 Use the electronegativity table in Figure 2.3 to predict which bond in the following pairs is more polar and indicate the direction of bond polarity for each compound. (a) H3C-Cl or Cl-CI (b) H3C-H or H-CI (c) HO-CH3 or (CH3)3Si-CH3 (d) H3C-Li or Li-OHarrow_forward
- Reagan is doing an atomic absorption experiment that requires a set of zinc standards in the 0.4-1.6 ppm range. A 1000 ppm Zn solution was prepared by dissolving the necessary amount of solid Zn(NO3)2 in water. The standards can be prepared by diluting the 1000 ppm Zn solution. Table 1 shows one possible set of serial dilutions (stepwise dilution of a solution) that Reagan could perform to make the necessary standards. Solution A was prepared by diluting 5.00 ml of the 1000 ppm Zn standard to 50.00 ml. Solutions C-E are called "calibration standards" because they will be used to calibrate the atomic absorption spectrometer. a. Compare the solution concentrations expressed as ppm Zn and ppm Zn(NO3)2. Compare the concentrations expressed as M Zn and M Zn(NO3)2 - Which units allow easy conversion between chemical species (e.g. Zn and Zn(NO3)2)? - Which units express concentrations in numbers with easily expressed magnitudes? - Suppose you have an analyte for which you don't know the molar…arrow_forwardNonearrow_forwardHow will you prepare the following buffers? 2.5 L of 1.5M buffer, pH = 10.5 from NH4Cl and NH3arrow_forward
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning