(a)
Interpretation:
Interpret the name of CaH2 is calcium hydride or not.
Concept Introduction:
The more the element is electropositive in nature, more it releases electron and thus its oxidation state is denoted by roman numerical after the name of cation.
For example in CuCl2, Cu having + 2 state and thus the name can be written as copper (ii) chloride.
Hence, charge of element is written as number of charge denoted with roman number.
(b)
Interpretation:
Interpret the name of PbCl2 is lead (iv) chloride or not.
Concept Introduction:
The more the element is electropositive in nature, more it releases electron and thus its oxidation state is denoted by roman numerical after the name of cation.
For example in CuCl2, Cu having + 2 state and thus the name can be written as copper (ii) chloride.
Hence, charge of element is written as number of charge denoted with roman number.
(c)
Interpretation:
Interpret the name of CrI3 is chromium (iii) iodide or not.
Concept Introduction:
The more the element is electropositive in nature, more it releases electron and thus its oxidation state is denoted by roman numerical after the name of cation.
For example in CuCl2, Cu having + 2 state and thus the name can be written as copper (ii) chloride.
Hence, charge of element is written as number of charge denoted with roman number.
(d)
Interpretation:
Interpret the name of Na2 S is disodium sulfide or not.
Concept Introduction:
The more the element is electropositive in nature, more it releases electron and thus its oxidation state is denoted by roman numerical after the name of cation.
For example in CuCl2, Cu having + 2 state and thus the name can be written as copper (ii) chloride.
Hence, charge of element is written as number of charge denoted with roman number.
(e)
Interpretation:
Interpret the name of CuBr2 is cupric bromide or not.
Concept Introduction:
The more the element is electropositive in nature, more it releases electron and thus its oxidation state is denoted by roman numerical after the name of cation.
For example in CuCl2, Cu having + 2 state and thus the name can be written as copper (ii) chloride.
Hence, charge of element is written as number of charge denoted with roman number.

Trending nowThis is a popular solution!

Chapter 5 Solutions
EBK INTRO.CHEMISTRY (NASTA EDITION)
- Draw the skeletal structure corresponding to the following IUPAC name: 7-isopropyl-3-methyldecanearrow_forwardWhich of the following oxyacids is the weakest? Group of answer choices H2SeO3 Si(OH)4 H2SO4 H3PO4arrow_forwardAdd conditions above and below the arrow that turn the reactant below into the product below in a single transformation. + More... If you need to write reagents above and below the arrow that have complex hydrocarbon groups in them, there is a set of standard abbreviations you can use. More... T H,N NC Datarrow_forward
- Indicate the order of basicity of primary, secondary and tertiary amines.arrow_forward> Classify each of the following molecules as aromatic, antiaromatic, or nonaromatic. Cl Z- N O aromatic O antiaromatic O nonaromatic O aromatic O antiaromatic O nonaromatic O aromatic ○ antiaromatic nonaromaticarrow_forwardPlease help me answer this question. I don't understand how or even if this can happen in a single transformation. Please provide a detailed explanation and a drawing showing how it can happen in a single transformation. Add the necessary reagents and reaction conditions above and below the arrow in this organic reaction. If the products can't be made from the reactant with a single transformation, check the box under the drawing area instead.arrow_forward
- 2) Draw the correct chemical structure (using line-angle drawings / "line structures") from their given IUPAC name: a. (E)-1-chloro-3,4,5-trimethylhex-2-ene b. (Z)-4,5,7-trimethyloct-4-en-2-ol C. (2E,6Z)-4-methylocta-2,6-dienearrow_forwardපිපිම Draw curved arrows to represent the flow of electrons in the reaction on the left Label the reactants on the left as either "Acid" or "Base" (iii) Decide which direction the equilibrium arrows will point in each reaction, based on the given pk, values (a) + H-O H 3-H + (c) H" H + H****H 000 44-00 NH₂ (e) i Дон OH Ө NHarrow_forward3) Label the configuration in each of the following alkenes as E, Z, or N/A (for non-stereogenic centers). 00 E 000 N/A E Br N/A N/A (g) E N/A OH E (b) Oz N/A Br (d) 00 E Z N/A E (f) Oz N/A E (h) Z N/Aarrow_forward
- 6) Fill in the missing Acid, pKa value, or conjugate base in the table below: Acid HCI Approximate pK, -7 Conjugate Base H-C: Hydronium (H₂O') -1.75 H-O-H Carboxylic Acids (RCOOH) Ammonium (NH4) 9.24 Water (H₂O) H-O-H Alcohols (ROH) RO-H Alkynes R--H Amines 25 25 38 HOarrow_forward5) Rank the following sets of compounds in order of decreasing acidity (most acidic to least acidic), and choose the justification(s) for each ranking. (a) OH V SH я вон CH most acidic (lowst pKa) least acidic (highest pKa) Effect(s) Effect(s) Effect(s) inductive effect O inductive effect O inductive effect electronegativity electronegativity O electronegativity resonance polarizability resonance polarizability O resonance O polarizability hybridization Ohybridization O hybridization оarrow_forwardHow negatively charged organic bases are formed.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





