Student Solutions Manual to accompany Atkins' Physical Chemistry 11th  edition
Student Solutions Manual to accompany Atkins' Physical Chemistry 11th edition
11th Edition
ISBN: 9780198807773
Author: ATKINS
Publisher: Oxford University Press
Question
Book Icon
Chapter 5, Problem 5A.2BE
Interpretation Introduction

Interpretation: The partial molar volume of the components A and B, (where A represents to water and B represents to MgSO4) in a solution has to be calculated.

Concept introduction: Mixtures of two components are called as binary mixture.  The partial molar volume is the contribution that a component of mixture makes to the total volume of a sample.  The partial molar volume of a substance is expressed as,

  V=(Vn)p,T,n'

Expert Solution & Answer
Check Mark

Answer to Problem 5A.2BE

The partial molar volumes of MgSO4 and H2O are -1.38cm3mol-1_ and 18.04cm3mol-1_ respectively.

Explanation of Solution

The partial molar volumes of components of mixture vary with compositions.  The nature of molecule changes from pure A to pure B with change in composition.  This results in the variation in thermodynamic properties of a mixture.  The partial molar volume of component B is expressed as,

  VB=(VnB)p,T,nA                                                                                             (1)

Where,

  • VB is partial molar volume of component B.
  • V is the total volume of the mixture.
  • nB is the mole fraction of component B.

It is given that,

Weight of water =1kg.or 1000g.

Since, molecular weight of water is 18gmol1.

Therefore the number of moles of water is,

  nH2O=WeightMolecularweight=1000g18gmol1=55.5mol

Volume of an aqueous solution of MgSO4 in water is,

  v=1001.21+34.69(x0.070)2                                                                      (2)

Where,

  • v=Vcm3
  • x=bb

Molality of MgSO4=0.050molkg1

For pure form, b is taken as unity.

Hence,

  x=nMgSO41mol

The partial molar volume of MgSO4 in the mixture is expressed as,

  VMgSO4=(VnMgSO4)p,T,nA                                                                                  (3)

Substitute the value of V and nMgSO4 in equation (3).

  VMgSO4=(VnMgSO4)p,T,nA=((vcm3)(xmol))p,T,nA=(vx)p,T,nAcm3mol1

Substitute the value of v from equation (2) in the above expression.

  (vx)p,T,nA=((1001.21+34.69(x0.070)2)x)cm3mol1=(0+34.69×2(x0.070)×1)cm3mol1=(69.38(x0.070))cm3mol1=(69.38x4.85)cm3mol1

The partial molar volume of MgSO4 in term of x is,

  (vx)p,T,nA=(69.38x4.85)cm3mol1                                                          (4)

To calculate the partial molar volume of MgSO4, substitute the value of x in equation (4).

The number of moles of MgSO4 is calculated by the formula

  nMgSO4=Molality×Mass

The molality is 0.050molkg1.

The mass of the solution is 1kg.

Substitute the value of molality and mass in the above equation

  nMgSO4=Molality×Volume=0.050molkg1×1kg=0.050mol

Hence,

  x=0.050mol1mol=0.050

Substitute the value of x in equation (4).

  (vx)p,T,nA=(69.38x4.85)cm3mol1=(69.38×0.0504.85)cm3mol1=(3.4694.85)cm3mol1=1.38cm3mol1

Therefore, VMgSO4=1.38cm3mol1

Therefore, the partial molar volume of MgSO4 is calculated as -1.38cm3mol-1_.

Now the total volume of the mixture is given by the relation,

  v=vAnA+vBnB                                                                                               (5)

Where,

  • vA is the molar volume of water.
  • vB is the molar volume of MgSO4.

Rearrange the above expression in term of vA.

  v=vAnA+vBnBvvBnB=vAnA

Or,

    vA=vvBnBnA                                                                                                  (6)

The total volume v is calculated by substituting the value of x in equation (2).

  v=1001.21+34.69(x0.070)2cm3=1001.21+34.69(0.0500.070)2cm3=1001.21+34.69(0.020)2cm3=1001.22cm3

Substitute the values of v,vB,nA,nB in equation (6).

  vA=vvBnBnA=(1001.22(1.38)×0.050)55.5cm3mol1=(1001.22+0.06955.5)cm3mol1=18.04cm3mol1

Therefore, the partial molar volume of H2O is calculated as, 18.04cm3mol-1_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
None
Dr. Mendel asked his BIOL 260 class what their height was and what their parent's heights were. He plotted that data in the graph below to determine if height was a heritable trait. A. Is height a heritable trait? If yes, what is the heritability value? (2 pts) B. If the phenotypic variation is 30, what is the variation due to additive alleles? (2 pts) Offspring Height (Inches) 75 67.5 60 52.5 y = 0.9264x + 4.8519 55 60 65 MidParent Height (Inches) 70 75 12pt v V Paragraph B IUA > AT2 v V
Experiment:  Each team will be provided with 5g of a mixture of acetanilide and salicylic acid. You will divide it into three 1.5 g portions in separate 125 mL Erlenmeyer flasks savıng some for melting point analysis. Dissolve the mixture in each flask in ~60mL of DI water by heating to boiling on a hotplate. Take the flasks off the hotplate once you have a clear solution and let them stand on the bench top for 5 mins and then allow them to cool as described below. Sample A-Let the first sample cool slowly to room temperature by letting it stand on your lab bench, with occasional stirring to promote crystallization. Sample B-Cool the second sample 1n a tap-water bath to 10-15 °C Sample C-Cool the third sample in an ice-bath to 0-2 °C Results: weight after recrystalization and melting point temp. A=0.624g,102-115° B=0.765g, 80-105° C=1.135g, 77-108 What is the percent yield of A,B, and C.

Chapter 5 Solutions

Student Solutions Manual to accompany Atkins' Physical Chemistry 11th edition

Ch. 5 - Prob. 5A.4DQCh. 5 - Prob. 5A.5DQCh. 5 - Prob. 5A.1AECh. 5 - Prob. 5A.1BECh. 5 - Prob. 5A.2AECh. 5 - Prob. 5A.2BECh. 5 - Prob. 5A.3AECh. 5 - Prob. 5A.3BECh. 5 - Prob. 5A.4AECh. 5 - Prob. 5A.4BECh. 5 - Prob. 5A.5AECh. 5 - Prob. 5A.5BECh. 5 - Prob. 5A.6AECh. 5 - Prob. 5A.6BECh. 5 - Prob. 5A.7AECh. 5 - Prob. 5A.7BECh. 5 - Prob. 5A.8AECh. 5 - Prob. 5A.8BECh. 5 - Prob. 5A.9AECh. 5 - Prob. 5A.9BECh. 5 - Prob. 5A.10AECh. 5 - Prob. 5A.10BECh. 5 - Prob. 5A.11AECh. 5 - Prob. 5A.11BECh. 5 - Prob. 5A.1PCh. 5 - Prob. 5A.3PCh. 5 - Prob. 5A.4PCh. 5 - Prob. 5A.5PCh. 5 - Prob. 5A.6PCh. 5 - Prob. 5A.7PCh. 5 - Prob. 5B.1DQCh. 5 - Prob. 5B.2DQCh. 5 - Prob. 5B.3DQCh. 5 - Prob. 5B.4DQCh. 5 - Prob. 5B.5DQCh. 5 - Prob. 5B.6DQCh. 5 - Prob. 5B.7DQCh. 5 - Prob. 5B.1AECh. 5 - Prob. 5B.1BECh. 5 - Prob. 5B.2AECh. 5 - Prob. 5B.2BECh. 5 - Prob. 5B.3AECh. 5 - Prob. 5B.3BECh. 5 - Prob. 5B.4AECh. 5 - Prob. 5B.4BECh. 5 - Prob. 5B.5AECh. 5 - Prob. 5B.5BECh. 5 - Prob. 5B.6AECh. 5 - Prob. 5B.6BECh. 5 - Prob. 5B.7AECh. 5 - Prob. 5B.7BECh. 5 - Prob. 5B.8AECh. 5 - Prob. 5B.8BECh. 5 - Prob. 5B.9AECh. 5 - Prob. 5B.9BECh. 5 - Prob. 5B.10AECh. 5 - Prob. 5B.10BECh. 5 - Prob. 5B.11AECh. 5 - Prob. 5B.11BECh. 5 - Prob. 5B.12AECh. 5 - Prob. 5B.12BECh. 5 - Prob. 5B.1PCh. 5 - Prob. 5B.2PCh. 5 - Prob. 5B.3PCh. 5 - Prob. 5B.4PCh. 5 - Prob. 5B.5PCh. 5 - Prob. 5B.6PCh. 5 - Prob. 5B.9PCh. 5 - Prob. 5B.11PCh. 5 - Prob. 5B.13PCh. 5 - Prob. 5C.1DQCh. 5 - Prob. 5C.2DQCh. 5 - Prob. 5C.3DQCh. 5 - Prob. 5C.1AECh. 5 - Prob. 5C.1BECh. 5 - Prob. 5C.2AECh. 5 - Prob. 5C.2BECh. 5 - Prob. 5C.3AECh. 5 - Prob. 5C.3BECh. 5 - Prob. 5C.4AECh. 5 - Prob. 5C.4BECh. 5 - Prob. 5C.1PCh. 5 - Prob. 5C.2PCh. 5 - Prob. 5C.3PCh. 5 - Prob. 5C.4PCh. 5 - Prob. 5C.5PCh. 5 - Prob. 5C.6PCh. 5 - Prob. 5C.7PCh. 5 - Prob. 5C.8PCh. 5 - Prob. 5C.9PCh. 5 - Prob. 5C.10PCh. 5 - Prob. 5D.1DQCh. 5 - Prob. 5D.2DQCh. 5 - Prob. 5D.1AECh. 5 - Prob. 5D.1BECh. 5 - Prob. 5D.2AECh. 5 - Prob. 5D.2BECh. 5 - Prob. 5D.3AECh. 5 - Prob. 5D.3BECh. 5 - Prob. 5D.4AECh. 5 - Prob. 5D.4BECh. 5 - Prob. 5D.5AECh. 5 - Prob. 5D.5BECh. 5 - Prob. 5D.6AECh. 5 - Prob. 5D.1PCh. 5 - Prob. 5D.2PCh. 5 - Prob. 5D.3PCh. 5 - Prob. 5D.4PCh. 5 - Prob. 5D.5PCh. 5 - Prob. 5D.6PCh. 5 - Prob. 5D.7PCh. 5 - Prob. 5E.1DQCh. 5 - Prob. 5E.2DQCh. 5 - Prob. 5E.3DQCh. 5 - Prob. 5E.4DQCh. 5 - Prob. 5E.1AECh. 5 - Prob. 5E.1BECh. 5 - Prob. 5E.2AECh. 5 - Prob. 5E.2BECh. 5 - Prob. 5E.3AECh. 5 - Prob. 5E.3BECh. 5 - Prob. 5E.4AECh. 5 - Prob. 5E.4BECh. 5 - Prob. 5E.5AECh. 5 - Prob. 5E.5BECh. 5 - Prob. 5E.1PCh. 5 - Prob. 5E.2PCh. 5 - Prob. 5E.3PCh. 5 - Prob. 5F.1DQCh. 5 - Prob. 5F.2DQCh. 5 - Prob. 5F.3DQCh. 5 - Prob. 5F.4DQCh. 5 - Prob. 5F.5DQCh. 5 - Prob. 5F.1AECh. 5 - Prob. 5F.1BECh. 5 - Prob. 5F.2AECh. 5 - Prob. 5F.2BECh. 5 - Prob. 5F.3AECh. 5 - Prob. 5F.3BECh. 5 - Prob. 5F.4AECh. 5 - Prob. 5F.4BECh. 5 - Prob. 5F.5AECh. 5 - Prob. 5F.5BECh. 5 - Prob. 5F.6AECh. 5 - Prob. 5F.6BECh. 5 - Prob. 5F.7AECh. 5 - Prob. 5F.7BECh. 5 - Prob. 5F.8AECh. 5 - Prob. 5F.8BECh. 5 - Prob. 5F.1PCh. 5 - Prob. 5F.2PCh. 5 - Prob. 5F.3PCh. 5 - Prob. 5F.4PCh. 5 - Prob. 5.1IACh. 5 - Prob. 5.2IACh. 5 - Prob. 5.3IACh. 5 - Prob. 5.4IACh. 5 - Prob. 5.5IACh. 5 - Prob. 5.6IACh. 5 - Prob. 5.8IACh. 5 - Prob. 5.9IACh. 5 - Prob. 5.10IA
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY