Principles of Instrumental Analysis
Principles of Instrumental Analysis
7th Edition
ISBN: 9781337468039
Author: Skoog
Publisher: Cengage
Question
Book Icon
Chapter 5, Problem 5.9QAP
Interpretation Introduction

Interpretation:

Root-mean-square thermal noise associated with a resister should be calculated. The fate of the thermal noise when the bandwidth is reduced to 100 Hz should be predicted.

Concept introduction:

Data given:

Temperature (T) = Room temperature = 298 K

Bandwidth ( Δf ) = 1 MHz

Resistance of the resistor (R) = 1.0 MΩ

Thermal noise for a resistive circuit element can be given as

υ¯rms=4kTRΔfWhere,k = Boltzmann's constant = 1.38×1023 J/KT = Temperature in KR = Resistance in ΩΔf = Bandwidth

Blurred answer
Students have asked these similar questions
Show that a molecule with configuration π4 has a cylindrically symmetric electron distribution. Hint: Let the π orbitals be equal to xf and yf, where f is a function that depends only on the distance from the internuclear axis.
(a) Verify that the lattice energies of the alkali metal iodides are inversely proportional to the distances between the ions in MI (M = alkali metal) by plotting the lattice energies given below against the internuclear distances dMI. Is the correlation good? Would a better fit be obtained by plotting the lattice energies as a function of (1 — d*/d)/d, as theoretically suggested, with d* = 34.5 pm? You must use a standard graphing program to plot the graph. It generates an equation for the line and calculates a correlation coefficient. (b) From the graph obtained in (a), estimate the lattice energy of silver iodide. (c) Compare the results of (b) with the experimental value of 886 kJ/mol. If they do not agree, explain the deviation.
Can I please get help with #3 & 4? Thanks you so much!
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning