Concept explainers
(a)
Interpretation:
The molar mass of each liquid in all the samples at
Concept introduction:
The ideal gas equation can be expressed as follows:
Here,
The expression to calculate the moles of gas is as follows:
(a)

Answer to Problem 5.93P
The molar mass of liquid in sample I is
Explanation of Solution
The formula to convert
Substitute
The expression to calculate the molar mass of sample I is as follows:
Here,
Rearrange equation (2) for
Substitute the value
Substitute the value
Substitute the value
The molar mass of liquid in sample III is greater than the molar mass of liquid in sample I and II.
(b)
Interpretation:
From the mass percent of boron in each sample, the molecular formula for each sample is to be determined.
Concept introduction:
The formula to find an amount(mol) is:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a compound. The molecular formula tells the exact number of atoms of each element present in a compound.
Following are the steps to determine the molecular formula of a compound.
Step 1: Add the molar mass of each element multiplied by its number of atoms present in the empirical formula to obtain the empirical formula mass for the compound.
Step 2: Divide the molar mass of the compound by its empirical formula mass to obtain the whole number. The formula to calculate the whole number multiple is as follows:
Step 3: Multiply the whole number with the subscript of each element present in the empirical formula. This gives the molecular formula of the compound.
(b)

Answer to Problem 5.93P
The molecular formula for the liquid in sample I is
Explanation of Solution
The expression to calculate the percentage of hydrogen in the sample I is as follows:
Substitute
Substitute
Substitute
Consider
For sample I:
Calculate the mass of
Substitute
Calculate the mass of hydrogen from the given mass percent as follows:
Substitute
Construct the preliminary formula and use the values
Divide each subscript by the smallest subscript and after that multiply with 5 for B and H to make the whole number. Now, construct the empirical formula.
The expression to calculate the empirical formula mass of
Substitute
Substitute
The empirical formula and the molecular formulas are the same as the value of the whole number multiple is 1. The molecular formula is
For sample II:
Calculate the mass of
Substitute
Calculate the mass of hydrogen from the given mass percent as follows:
Substitute
Construct the preliminary formula and use the values
Divide each subscript by the smallest subscript and after that multiply with 2 for B and H to make the whole number. Now, construct the empirical formula.
The expression to calculate the empirical formula mass of
Substitute
Substitute
The empirical formula and the molecular formulas are the same as the value of the whole number multiple is 2. The molecular formula is
For sample III,
Calculate the mass of
Substitute
Calculate the mass of hydrogen from the given mass percent as follows:
Substitute
Construct the preliminary formula and use the values
Divide each subscript by the smallest subscript and after that multiply with 5 for
The expression to calculate the empirical formula mass of
Substitute
Substitute
The empirical formula and the molecular formulas are the same as the value of the whole number multiple is 1. The molecular formula is
The molecular formula of the liquid in three samples indicates that the number of boron atoms in sample I and III is 5 and in sample II is 4. The number of hydrogen also varies.
(c)
Interpretation:
The molecular formula of sample IV that contains
Concept introduction:
Effusion is explained as the movement of the gas molecule through a pinhole.
Diffusion can be explained as the mixing of one gas molecule with another gas molecule by random motion.
According to Graham’s law of effusion, the rate of effusion of a gas is inversely proportional to the square root of its molar mass.
The mathematical expression of Graham’s law of effusion is as follows:
Here,
(c)

Answer to Problem 5.93P
The molecular formula of sample IV is
Explanation of Solution
The expression to calculate the molar mass of the unknown gas is as follows:
Rearrange equation (10) for the molar mass of sample IV as follows:
Rearrange equation (11) for the rate of
Substitute
Substitute
For sample IV:
Calculate the mass of
Substitute
Calculate the mass of hydrogen from the given mass percent as follows:
Substitute
Construct the preliminary formula and use the values
Divide each subscript by the smallest subscript and after that multiply with 5 to make the whole number. Now, construct the empirical formula.
The expression to calculate the empirical formula mass of
Substitute
Substitute
The empirical formula and the molecular formulas are the same as the value of the whole number multiple is 2. The molecular formula is
The molecular formula of sample IV is
Want to see more full solutions like this?
Chapter 5 Solutions
MCGRAW: CHEMISTRY THE MOLECULAR NATURE
- What kind of holes are not generated when solid-state particles adopt a close packing pattern? Group of answer choices tetrahedral cubic octahedral None of the other choices are correctarrow_forwardFor the reaction below: 1. Draw all reasonable elimination products to the right of the arrow. 2. In the box below the reaction, redraw any product you expect to be a major product. 田 Major Product: Check ☐ + I Na OH esc F1 F2 2 1 @ 2 Q W tab A caps lock S #3 80 F3 69 4 σ F4 % 95 S Click and drag to sta drawing a structure mm Save For Later 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use GO DII F5 F6 F7 F8 F9 F10 6 CO 89 & 7 LU E R T Y U 8* 9 0 D F G H J K L Z X C V B N M 36arrow_forwardProblem 7 of 10 Draw the major product of this reaction. Ignore inorganic byproducts. S' S 1. BuLi 2. ethylene oxide (C2H4O) Select to Draw a Submitarrow_forward
- Feedback (4/10) 30% Retry Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the reactant and missing intermediates involved in this reaction. Include all lone pairs and charges as appropriate. Ignore inorganic byproducts. Incorrect, 6 attempts remaining :0: Draw the Reactant H H3CO H- HIO: Ö-CH3 CH3OH2* protonation H. a H (+) H Ο CH3OH2 O: H3C protonation CH3OH deprotonation > CH3OH nucleophilic addition H. HO 0:0 Draw Intermediate a Xarrow_forwardCan I please get the blank spaces answered/answers?arrow_forward1. Identify the following alkenes as E or Z NH₂ Br 2. Draw the structures based on the IUPAC names (3R,4R)-3-bromo-4-fluoro- 1-hexene (Z)-4-bromo-2-iodo-3-ethyl- 3-heptene تر 3. For the following, predict all possible elimination product(s) and circle the major product. HO H₂SO4 Heat 80 F4 OH H2SO4 Heat 어요 F5 F6 1 A DII 4 F7 F8 F9 % & 5 6 7 * ∞ 8 BAB 3 E R T Y U 9 F D G H J K O A F11 F10arrow_forward
- Draw the major product of this reaction. Ignore inorganic byproducts. ○ O 1. H₂O, pyridine 2. neutralizing work-up a N W X 人 Parrow_forward✓ Check the box under each molecule that has a total of five ẞ hydrogens. If none of the molecules fit this description, check the box underneath the table. tab OH CI 0 Br xx Br None of these molecules have a total of five ẞ hydrogens. esc Explanation Check caps lock shift 1 fn control 02 F2 W Q A N #3 S 80 F3 E $ t 01 205 % 5 F5 & 7 © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility FT * 8 R T Y U כ F6 9 FIG F11 F D G H J K L C X V B < N M H option command P H + F12 commandarrow_forwardDraw the major product of this reaction. Ignore inorganic byproducts and the carboxylic acid side product. O 1. CHзMgBr (excess) 2. H₂O ✓ W X 人arrow_forward
- If cyclopentyl acetaldehyde reacts with NaOH, state the product (formula).arrow_forwardDraw the major product of this reaction. Ignore inorganic byproducts. N S S HgCl2, H2SO4 く 8 W X Parrow_forwardtab esc く Drawing the After running various experiments, you determine that the mechanism for the following reaction occurs in a step-wise fashion. Br + OH + Using this information, draw the correct mechanism in the space below. 1 Explanation Check F2 F1 @2 Q W A os lock control option T S # 3 80 F3 Br $ 4 0105 % OH2 + Br Add/Remove step X C F5 F6 6 R E T Y 29 & 7 F D G H Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Ce A F7 DII F8 C Ո 8 * 9 4 F10 F C J K L C V Z X B N M H command P ge Coarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





