Concept explainers
91 A 0.2500-g sample of an Al-Zn alloy reacts with HCl to form hydrogen gas:
The hydrogen produced has a volume of 0.147 L at 25°C and 755 mm Hg. What is the percentage of zinc in the alloy?
Interpretation:
A 0.2500 g sample of an Al-Zn alloy reacts with HCl to form hydrogen gas:
The hydrogen produced has a volume of 0.147L at 250C and 755mm Hg. The percentage of Zinc in the alloy needs to be calculated.
Concept introduction:
An ideal gas which is known as the perfect gas is a gas whose volume V, Pressure P and temperature T are related through the ideal gas laws: -
Here,
-
n = Number of moles of the gas
R = Universal gas constant
T = Temperature
P = Pressure
Ideal gases are described as the molecules which have negligible size but have an average molar kinetic energy which is dependent on the temperature. When temperature is low most of the gases behave like ideal gases and the ideal gas law might be applied to them.
Answer to Problem 5.91PAE
Solution:
Explanation of Solution
Here given that,
Temperature = 250C;
Converting Temperature into Kelvin
Therefore, the temperature in Kelvin is 298 K
Pressure = 755 mm Hg = Converting mmHg to atm
Therefore, the Pressure in atm is 0.993 atm
The number of moles gas is calculated from ideal gas equation.
Total number hydrogen moles can be calculated by using an ideal gas equation: -
Here
R = Gas constant = 0.0821 L.atm / mol. K
T = Temperature = 298
V = Volume = 0.147 L
Total number of hydrogen moles comes by the combination of Al and Zn
Now, let’s assume mass of Al is x therefore, mass of Zn is (0.2500-x) g
Therefore,
Now the mass of Zn will be: -
Now, calculating the percentage of Zn by using below equation: -
Now substituting the value of Zn and alloy in the above equation: -
An ideal gas which is known as the perfect gas is a gas whose volume V, Pressure P and temperature T are related through the ideal gas laws: -
Here,
-
n = Number of moles of the gas
R = Universal gas constant
T = Temperature
P = Pressure
The above equation can be used to calculate the percentage of Zn in the alloy.
Want to see more full solutions like this?
Chapter 5 Solutions
EBK CHEMISTRY FOR ENGINEERING STUDENTS,
- Convert the following structures into a chair representation. Then conduct a chair flip. Cl a. b. C\.... оarrow_forwardAktiv Learning App Cengage Digital Learning Part of Speech Table for Assign x o Mail-Karen Ento-Outlook * + app.aktiv.com Your Aktiv Learning trial expires on 02/06/25 at 01:15 PM Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 17 of 30 Drawing Arrows heat 4 O M B D 5x H H Und Settings H Done :0: H Jararrow_forwardConvert the following chairs into ring representations: a. Brz b.arrow_forward
- Drawing Arrows 1 I I 1 heat 1 51 MO + Drag To Und Settings Done 0 0 Jan 31 3:5arrow_forwardDon't used hand raitingarrow_forwardGramicidin A can adopt more than one structure; NMR spectroscopy has revealed an “end-to-end” dimer form, and x-ray crystallography has revealed an “anti-parallel double- helical” form. Briefly outline and describe an experimentalapproach/strategy to investigate WHICH configuration (“end-to-end dimer” vs “anti-paralleldouble helical”) gramicidin adopts in an actual lipid bilayer.arrow_forward
- Don't used hand raitingarrow_forwardCHEM2323 Problem 2-24 Tt O e: ל Predict the product(s) of the following acid/base reactions. Draw curved arrows to show the formation and breaking of bonds. If the bonds needed are not drawn out, you should redraw them. + BF3 (a) (b) HI + (c) OH -BF Problem 2-25 Use curved arrows and a proton (H+) to draw the protonated form of the following Lewis bases. Before starting, add all missing lone pairs. (a) (b) :0: (c) N 1 CHEM2323 PS CH02 Name:arrow_forwardCHEM2323 Problem 2-26 Tt O PS CH02 Name: Use the curved-arrow formalism to show how the electrons flow in the resonance form on the left to give the one on the right. (Draw all lone pairs first) (a) NH2 NH2 + (b) Problem 2-27 Double bonds can also act like Lewis bases, sharing their electrons with Lewis acids. Use curved arrows to show how each of the following double bonds will react with H-Cl and draw the resulting carbocation. (a) H2C=CH2 (b) (c) Problem 2-28 Identify the most electronegative element in each of the following molecules: (a) CH2FCI F Problem 2-29 (b) FCH2CH2CH2Br (c) HOCH2CH2NH2 (d) CH3OCH2Li F 0 0 Use the electronegativity table in Figure 2.3 to predict which bond in the following pairs is more polar and indicate the direction of bond polarity for each compound. (a) H3C-Cl or Cl-CI (b) H3C-H or H-CI (c) HO-CH3 or (CH3)3Si-CH3 (d) H3C-Li or Li-OHarrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning