
(a)
Interpretation:
The response of cell potential when the molar concentration of given species is increased has to be predicted and confirmed using Nernst equation.
Concept Introduction:
(b)
Interpretation:
The response of cell potential when nitric acid is added to both compartments has to be predicted and confirmed using Nernst equation.
Concept Introduction:
Electrochemical cells: Both oxidation and reduction occur at the same moment in an electrochemical cell. The oxidation process occurs at the anode while the reduction process occurs at the cathode in the cell. The concentration of the electrode (anode or cathode) in the half-cells and cell potential (voltage) can be calculated with the help of Nernst equation.
(c)
Interpretation:
The response of cell potential when the oxygen pressure is increased has to be predicted and confirmed using Nernst equation.
Concept Introduction:
Electrochemical cells: Both oxidation and reduction occur at the same moment in an electrochemical cell. The oxidation process occurs at the anode while the reduction process occurs at the cathode in the cell. The concentration of the electrode (anode or cathode) in the half-cells and cell potential (voltage) can be calculated with the help of Nernst equation.
(d)
Interpretation:
The response of cell potential when hydrogen pressure is increased has to be predicted and confirmed using Nernst equation.
Concept Introduction:
Electrochemical cells: Both oxidation and reduction occur at the same moment in an electrochemical cell. The oxidation process occurs at the anode while the reduction process occurs at the cathode in the cell. The concentration of the electrode (anode or cathode) in the half-cells and cell potential (voltage) can be calculated with the help of Nernst equation.
(e)
Interpretation:
The response of cell potential when the hydrochloric and hydroiodic acid is added to both compartments has to be predicted and confirmed using Nernst equation.
Concept Introduction:
Electrochemical cells: Both oxidation and reduction occur at the same moment in an electrochemical cell. The oxidation process occurs at the anode while the reduction process occurs at the cathode in the cell. The concentration of the electrode (anode or cathode) in the half-cells and cell potential (voltage) can be calculated with the help of Nernst equation.
(f)
Interpretation:
The response of cell potential when hydrochloric is added to both compartments has to be predicted and confirmed using Nernst equation.
Concept Introduction:
Electrochemical cells: Both oxidation and reduction occur at the same moment in an electrochemical cell. The oxidation process occurs at the anode while the reduction process occurs at the cathode in the cell. The concentration of the electrode (anode or cathode) in the half-cells and cell potential (voltage) can be calculated with the help of Nernst equation.

Want to see the full answer?
Check out a sample textbook solution
Chapter 5 Solutions
Elements Of Physical Chemistry
- Determine the pH of solution of HC3H5O2 By constructing an ICE table writing the equilibrium constant expression, and using this information to determine the pH. The Ka of HC3H5O2 is 1.3 x 10-5arrow_forwardDetermine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction LiNO3arrow_forwardAn unknown weak acid with a concentration of 0.410 M has a pH of 5.600. What is the Ka of the weak acid?arrow_forward
- (racemic) 19.84 Using your reaction roadmaps as a guide, show how to convert 2-oxepanone and ethanol into 1-cyclopentenecarbaldehyde. You must use 2-oxepanone as the source of all carbon atoms in the target molecule. Show all reagents and all molecules synthesized along the way. & + EtOH H 2-Oxepanone 1-Cyclopentenecarbaldehydearrow_forwardR₂ R₁ R₁ a R Rg Nu R₂ Rg R₁ R R₁₂ R3 R R Nu enolate forming R₁ R B-Alkylated carbonyl species or amines Cyclic B-Ketoester R₁₁ HOB R R₁B R R₁₂ B-Hydroxy carbonyl R diester R2 R3 R₁ RB OR R₂ 0 aB-Unsaturated carbonyl NaOR Aldol HOR reaction 1) LDA 2) R-X 3) H₂O/H₂O ketone, aldehyde 1) 2°-amine 2) acid chloride 3) H₂O'/H₂O 0 O R₁ R₁ R R₁ R₁₂ Alkylated a-carbon R₁ H.C R₁ H.C Alkylated methyl ketone acetoacetic ester B-Ketoester ester R₁ HO R₂ R B-Dicarbonyl HO Alkylated carboxylic acid malonic ester Write the reagents required to bring about each reaction next to the arrows shown. Next, record any regiochemistry or stereochemistry considerations relevant to the reaction. You should also record any key aspects of the mechanism, such as forma- tion of an important intermediate, as a helpful reminder. You may want to keep track of all reactions that make carbon-carbon bonds, because these help you build large molecules from smaller fragments. This especially applies to the reactions in…arrow_forwardProvide the reasonable steps to achieve the following synthesis.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





