Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)
9th Edition
ISBN: 9781285462530
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5, Problem 54PS
Write a balanced chemical equation for the formation of CaCO3(s) from the elements in their standard states. Find the value for ΔrH° for CaCO3(s) in Appendix L.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please correct answer and don't used hand raiting
Please correct answer and don't used hand raiting
(11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the
molecule depicted below.
Bond B
Bond A
Bond C
a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in
appropriate boxes.
Weakest
Bond
Strongest
Bond
b. (4pts) Consider the relative stability of all cleavage products that form when bonds A,
B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B,
and C are all carbon radicals.
i. Which ONE cleavage product is the most stable? A condensed or bond line
representation is fine.
ii. Which ONE cleavage product is the least stable? A condensed or bond line
representation is fine.
c. (5pts) Use principles discussed in lecture, supported by relevant structures, to
succinctly explain the why your part b (i) radical is more stable than your part b(ii)
radical. Written explanation can be no more than one-two succinct sentence(s)!
Chapter 5 Solutions
Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)
Ch. 5.1 - 1. Which of the following processes is...Ch. 5.1 - 2. Your skin cools as perspiration evaporates. Is...Ch. 5.2 - You did an experiment in which you found that 59.8...Ch. 5.2 - A 15.5-g piece of chromium, heated to 100.0 C, is...Ch. 5.2 - Prob. 1RCCh. 5.2 - Prob. 2RCCh. 5.3 - Calculate the amount of energy necessary to raise...Ch. 5.3 - To make a glass of iced tea, you pour 250 mL of...Ch. 5.3 - 1. Which of the following processes requires the...Ch. 5.3 - Ice (5.0 g) at 0 C is added to 25 g of liquid...
Ch. 5.4 - Nitrogen gas (2.75 L) is confined in a cylinder...Ch. 5.4 - Which of the following processes will lead to a...Ch. 5.4 - 2. In which of the following reactions is there a...Ch. 5.5 - The combustion of ethane, C2H6, has an enthalpy...Ch. 5.5 - 1. For the reaction 2 Hg(l) + O2(g) → 2 HgO(s),...Ch. 5.5 - 2. For the reaction 2 CO(g) + O2(g) → 2 CO2(g)....Ch. 5.6 - Assume 200. mL of 0.400 M HCl is mixed with 200....Ch. 5.6 - A 1.00-g sample of ordinary table sugar (sucrose,...Ch. 5.6 - A student used a coffee-cup calorimeter to...Ch. 5.6 - If, in the experiment described in the previous...Ch. 5.7 - Use Hesss law to calculate the enthalpy change for...Ch. 5.7 - Calculate the standard enthalpy of combustion for...Ch. 5.7 - Prob. 1RCCh. 5.7 - The standard enthalpies of formation of KNO3(s)...Ch. 5.7 - Prob. 2QCh. 5.7 - The decomposition of nitroglycerin (C3H5N3O9)...Ch. 5.7 - Prob. 2RCCh. 5 - Define the terms system and surroundings. What...Ch. 5 - What determines the directionality of energy...Ch. 5 - Identify whether the following processes are...Ch. 5 - Identify whether the following processes are...Ch. 5 - The molar heat capacity of mercury is 28.1 J/mol ...Ch. 5 - The specific heat capacity of benzene (C6H6) is...Ch. 5 - The specific heat capacity of copper metal is...Ch. 5 - How much energy as heat is required to raise the...Ch. 5 - The initial temperature of a 344-g sample of iron...Ch. 5 - After absorbing 1.850 kJ of energy as heat, the...Ch. 5 - A 45.5-g sample of copper at 99.8 C is dropped...Ch. 5 - One beaker contains 156 g of water at 22 C, and a...Ch. 5 - A 182-g sample of gold at some temperature was...Ch. 5 - When 108 g of water at a temperature of 22.5 C is...Ch. 5 - A 13.8-g piece of zinc is heated to 98.8 C in...Ch. 5 - A 237-g piece of molybdenum, initially at 100.0 C,...Ch. 5 - How much energy is evolved as heat when 1.0 L of...Ch. 5 - The energy required to melt 1.00 g of ice at 0 C...Ch. 5 - How much energy is required to vaporize 125 g of...Ch. 5 - Chloromethane, CH3CI, arises from microbial...Ch. 5 - The freezing point of mercury is 38.8 C. What...Ch. 5 - What quantity of energy, in joules, is required to...Ch. 5 - Ethanol, C2HsOH, boils at 78.29 C. How much...Ch. 5 - A 25.0-mL sample of benzene at 19.9 C was cooled...Ch. 5 - As a gas cools, it is compressed from 2.50 L to...Ch. 5 - A balloon expands from 0.75 L to 1.20 L as it is...Ch. 5 - A balloon does 324 J of work on the surroundings...Ch. 5 - As the gas trapped in a cylinder with a movable...Ch. 5 - When 745 J of energy in the form of heat is...Ch. 5 - The internal energy of a gas decreases by 1.65 kJ...Ch. 5 - A volume of 1.50 L of argon gas is confined in a...Ch. 5 - Nitrogen gas is confined in a cylinder with a...Ch. 5 - Nitrogen monoxide, a gas recently found to be...Ch. 5 - Calcium carbide, CaC2, is manufactured by the...Ch. 5 - Isooctane (2,2,4-trimethylpentane), one of the...Ch. 5 - Acetic acid. CH3CO2H, is made industrially by the...Ch. 5 - You mix 125 mL of 0.250 M CsOH with 50.0 mL of...Ch. 5 - You mix 125 mL of 0.250 M CsOH with 50.0 mL of...Ch. 5 - A piece of titanium metal with a mass of 20.8 g is...Ch. 5 - A piece of chromium metal with a mass of 24.26 g...Ch. 5 - Adding 5.44 g of NH4NO3(s) to 150.0 g of water in...Ch. 5 - You should use care when dissolving H2SO4 in water...Ch. 5 - Sulfur (2.56 g) was burned in a constant-volume...Ch. 5 - Suppose you burned 0.300 g of C(s) in an excess of...Ch. 5 - Suppose you burned 1.500 g of benzoic acid,...Ch. 5 - A 0.692-g sample of glucose, C6H12O6, was burned...Ch. 5 - An ice calorimeter can be used to determine the...Ch. 5 - A 9.36-g piece of platinum was heated to 98.6 C in...Ch. 5 - The enthalpy changes for the following reactions...Ch. 5 - The enthalpy changes of the following reactions...Ch. 5 - Enthalpy changes for the following reactions can...Ch. 5 - You wish to know the enthalpy change for the...Ch. 5 - Write a balanced chemical equation for the...Ch. 5 - Write a balanced chemical equation for the...Ch. 5 - (a) Write a balanced chemical equation for the...Ch. 5 - (a) Write a balanced chemical equation for the...Ch. 5 - Use standard enthalpies of formation in Appendix L...Ch. 5 - Use standard enthalpies of formation in Appendix L...Ch. 5 - The first step in the production of nitric acid...Ch. 5 - The Romans used calcium oxide, CaO, to produce a...Ch. 5 - The standard enthalpy of formation of solid barium...Ch. 5 - An important step in the production of sulfuric...Ch. 5 - The enthalpy change for the oxidation of...Ch. 5 - The enthalpy change for the oxidation of styrene....Ch. 5 - Prob. 65GQCh. 5 - Prob. 66GQCh. 5 - For each of the following, define a system and its...Ch. 5 - Prob. 68GQCh. 5 - Use Appendix L to find the standard enthalpies of...Ch. 5 - You have a large balloon containing 1.0 mol of...Ch. 5 - Determine whether energy as heat is evolved or...Ch. 5 - Determine whether energy as heat is evolved or...Ch. 5 - Use standard enthalpies of formation to calculate...Ch. 5 - Which evolves more energy on cooling from 50 C to...Ch. 5 - You determine that 187 J of energy as heat is...Ch. 5 - Calculate the quantity of energy required to...Ch. 5 - You add 100.0 g of water at 60.0 C to 100.0 g of...Ch. 5 - Three 45-g ice cubes at 0 C are dropped into 5.00 ...Ch. 5 - Suppose that only two 45-g ice cubes had been...Ch. 5 - You take a diet cola from the refrigerator and...Ch. 5 - The standard molar enthalpy of formation of...Ch. 5 - Chloromethane, CH3Cl, a compound found throughout...Ch. 5 - Prob. 83GQCh. 5 - Camping stoves are fueled by propane (C3H8),...Ch. 5 - Prob. 85GQCh. 5 - Prob. 86GQCh. 5 - (a) Calculate the enthalpy change, rH, for the...Ch. 5 - You drink 350 mL of diet soda that is at a...Ch. 5 - Chloroform, CHCl3, is formed from methane and...Ch. 5 - Water gas, a mixture of carbon monoxide and...Ch. 5 - Using standard enthalpies of formation, verify...Ch. 5 - A piece of lead with a mass of 27.3 g was heated...Ch. 5 - A 192-g piece of copper is heated to 100.0 C in a...Ch. 5 - Insoluble AgCl(s) precipitates when solutions of...Ch. 5 - Insoluble PbBr2(s) precipitates when solutions of...Ch. 5 - The value of U for the decomposition of 7.647 g of...Ch. 5 - A bomb calorimetric experiment was run to...Ch. 5 - The meals-ready-to-eat (MREs) in the military can...Ch. 5 - On a cold day, you can warm your hands with a heat...Ch. 5 - Without doing calculations, decide whether each of...Ch. 5 - Prob. 102SCQCh. 5 - You want to determine the value for the enthalpy...Ch. 5 - Prepare a graph of specific heat capacities for...Ch. 5 - Prob. 105SCQCh. 5 - You are attending summer school and living in a...Ch. 5 - Prob. 107SCQCh. 5 - Prob. 108SCQCh. 5 - Prob. 109SCQCh. 5 - Peanuts and peanut oil are organic materials and...Ch. 5 - Isomers are molecules with the same elemental...Ch. 5 - Prob. 112SCQCh. 5 - Prob. 113SCQCh. 5 - A piece of gold (10.0 g, CAu = 0.129 J/g K) is...Ch. 5 - Methane, CH4, can be converted to methanol, which,...Ch. 5 - Calculate rH for the reaction 2 C(s) + 3 H2(g) + ...Ch. 5 - You have the six pieces of metal listed below,...Ch. 5 - Sublimation of 1.0 g of dry ice. CO2(s), forms...Ch. 5 - In the reaction of two moles of gaseous hydrogen...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- . 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Q2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forwardPrint Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward
- 10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forwardDo the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forwardNGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2arrow_forward
- Hi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forwardIn three dimensions, explain the concept of the velocity distribution function of particles within the kinetic theory of gases.arrow_forwardIn the kinetic theory of gases, explain the concept of the velocity distribution function of particles in space.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY