![Fundamentals of Electromagnetics with Engineering Applications](https://www.bartleby.com/isbn_cover_images/9780470105757/9780470105757_largeCoverImage.gif)
Concept explainers
For a general elliptical polarization represented by
MAJ = length of majority-axis
MIN = length of minority-axis
Compose a program that not only draws a polarization plot like MATLAB 5.3 but also calculates the axial ratio and tilt angle. Run the program for Drill 5.11.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 5 Solutions
Fundamentals of Electromagnetics with Engineering Applications
- Q5) a) State Ampere's circuit law. b) In a certain conducting region, H = yz(x² + y²)ax - y²xzay + 4x²y²a, A/m. (a) Determine J at (5, 2, -3) (b) Find the current passing through x = -1, 0 < y, z <2 (c) Show that V⚫H=0arrow_forwardFig. 1.43 Circuit for Q6- Q7 For the network of Fig. 1.44: a-Determine fH; and fHo b- Find fg and fr. c- Sketch the frequency response for the high-frequency region using a Bode plot and determine the cutoff frequency. Ans: 277.89 KHz; 2.73 MHz; 895.56 KHz; 107.47 MHz. 14V Cw=5pF Cbc-12 pF Cwo-8pF Che=40. pF 5.6kQ C-8pF 68kQ 0.47µF ww 0.82 kQ V₁ 0.47uF AN B=120 3.3kQ 10ΚΩ 1.2k0 =20µF Fig. 1.44 Circuit for Q7.arrow_forwardQ3) An infinite long filamentary wire carries a current of 2A in the +z direction. calculate: (a)B at (-3,4,7) (b) the flux through the square loop described by 25 16,0 Sz≤4, 0=90°.arrow_forward
- Q3) An infinitely long conductor is bent into an L shape as shown in Figure below. If a direct current of 5 A flows in the current, find the magnetic field intensity at (2, 2, 0). 5 A 5 Aarrow_forwardEx. 1° let Ĥ = -y (x²+y^³) ax + x (x²+y"`) ây":" H 5 find J M total current Passing through Z=oplane with the rectangular -\-2<<2arrow_forwardQ) Given the magnetic field vector potential: A= y² za, +2(x+1)y z ay- (x+1) z² az (A/m), find: (1)magnetic flux density B, (2)magnetic field intensity H, (3) current density J and (4) the current passing through surface y = 1,0≤x≤1, 0 ≤z≤1.arrow_forward
- Q9 For the network of Fig. 1.46: a- Determine gmo and gm. b- Find A, and Ay, in the mid-frequency range. c- Determine fH; and fHo Ans: 3.33 mS; 1.91 mS; -4.39; -4.27; 1.84 MHz; 3.68 MHz. + 1.5 kQ 20V 3220ΚΩ 1µF 68kQ AN CwF4pF Co=8 pF Cwo=6pF Cgs=12pF 53.9ΚΩ Cds=3pF 6.8µF o Vo Dss=10mA Vp=-6V 15.6 ΚΩ 2.2k =10µF Fiarrow_forwardQs For the network of Fig. 1.45: a- Determine fH, and fHo b- Find fp and fr c- Sketch the frequency response for the high-frequency region using a Bode plot and determine the cutoff frequency. Ans: 2.87 MHz, 185.78 MHz, 1.05 MHz, 105 MHz. 14V CWF8pF Cwo-10pF Cbc-20 pF Cbe=30pF 120 ΚΩ Co=12pF 1 ΚΩ B-100 0.1 µF Vs 0.1 HF Z; Vo www 30 kQ 2.2 ΚΩ € 8.2 kQ Fig. 1.45 Circuit for Carrow_forward5 A Q4) A thin ring of radius 5 cm is placed on plane z = 1 cm so that its center is at (0,0,1 cm). If the ring carries 50 mA along a^, find H at (0,0,a).arrow_forward
- Q6) Find the current density J for the magnetic field intensity vectors: (a) H = x²ya, + y²zay - 2xza, (b) H = p²zap + p³a + 3pz²az sin cos (c) H = a, 2 +2arrow_forwardQ2) Line x = 0, y=0,0arrow_forwardQ4) Given the magnetic vector potential: A = y²z ax-(x + 1)z² az A/m Find(a) the magnetic flux density; (b)the magnetic flux through a square loop described by 0≤x≤1, 0 ≤ y ≤1, z=2.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
![Text book image](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)