The lung cancer hazard rate λ ( t ) of a t-year-old male smoker is such that λ ( t ) = .027 + .00025 ( t − 40 ) 2 t ≥ 40 Assuming that a 40-year-old male smoker survives all other hazards, what is the probability that he survives to (a) age 50 and (b) age 60 without contracting lung cancer?
The lung cancer hazard rate λ ( t ) of a t-year-old male smoker is such that λ ( t ) = .027 + .00025 ( t − 40 ) 2 t ≥ 40 Assuming that a 40-year-old male smoker survives all other hazards, what is the probability that he survives to (a) age 50 and (b) age 60 without contracting lung cancer?
The lung cancer hazard rate
λ
(
t
)
of a t-year-old male smoker is such that
λ
(
t
)
=
.027
+
.00025
(
t
−
40
)
2
t
≥
40
Assuming that a 40-year-old male smoker survives all other hazards, what is the probability that he survives to (a) age 50 and (b) age 60 without contracting lung cancer?
Question 1: Let X be a random variable with p.m.f
(|x| +1)²
x= -2, -1, 0, 1,2
f(x) =
C
0,
O.W
1. The value of c.
2. The c.d.f.
3. E(X).
4. E(2x+3).
5. E(X²).
6. E(3x²+4).
7. E(X(3X+4)).
8. Var(X).
9. Var (6-3X).
10. Find the m.g.f of the random variable X
Please could you explain how to do integration by parts for this question in detail please
2. Claim events on a portfolio of insurance policies follow a Poisson process with parameter
A. Individual claim amounts follow a distribution X with density:
f(x)=0.0122re001, g>0.
The insurance company calculates premiums using a premium loading of 45%.
(a) Derive the moment generating function Mx(t).
Elementary Statistics ( 3rd International Edition ) Isbn:9781260092561
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Continuous Probability Distributions - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=QxqxdQ_g2uw;License: Standard YouTube License, CC-BY
Probability Density Function (p.d.f.) Finding k (Part 1) | ExamSolutions; Author: ExamSolutions;https://www.youtube.com/watch?v=RsuS2ehsTDM;License: Standard YouTube License, CC-BY
Find the value of k so that the Function is a Probability Density Function; Author: The Math Sorcerer;https://www.youtube.com/watch?v=QqoCZWrVnbA;License: Standard Youtube License