An image is partitioned into two regions, one white and the other black. A reading taken from a randomly chosen point in the white section will be normally distributed with μ = 4 and σ 2 = 4 , whereas one taken from a randomly chosen point in the black region will have a normally distributed reading with parameters (6, 9). A point is randomly chosen on the image and has a reading of 5. If the fraction of the image that is black is α , for what value of α would the probability of making an error be the same, regardless of whether one concluded that the point was in the black region or in the white region?
An image is partitioned into two regions, one white and the other black. A reading taken from a randomly chosen point in the white section will be normally distributed with μ = 4 and σ 2 = 4 , whereas one taken from a randomly chosen point in the black region will have a normally distributed reading with parameters (6, 9). A point is randomly chosen on the image and has a reading of 5. If the fraction of the image that is black is α , for what value of α would the probability of making an error be the same, regardless of whether one concluded that the point was in the black region or in the white region?
Solution Summary: The author explains that the value of probability of making an error be the same.
An image is partitioned into two regions, one white and the other black. A reading taken from a randomly chosen point in the white section will be normally distributed with
μ
=
4
and
σ
2
=
4
, whereas one taken from a randomly chosen point in the black region will have a normally distributed reading with parameters (6, 9). A point is randomly chosen on the image and has a reading of 5. If the fraction of the image that is black is
α
, for what value of
α
would the probability of making an error be the same, regardless of whether one concluded that the point was in the black region or in the white region?
Features Features Normal distribution is characterized by two parameters, mean (µ) and standard deviation (σ). When graphed, the mean represents the center of the bell curve and the graph is perfectly symmetric about the center. The mean, median, and mode are all equal for a normal distribution. The standard deviation measures the data's spread from the center. The higher the standard deviation, the more the data is spread out and the flatter the bell curve looks. Variance is another commonly used measure of the spread of the distribution and is equal to the square of the standard deviation.
Q3 (8 points)
Q3. A survey classified a large number of adults according to whether they were diag-
nosed as needing eyeglasses to correct their reading vision and whether they use
eyeglasses when reading. The proportions falling into the four resulting categories
are given in the following table:
Use Eyeglasses for Reading
Needs glasses Yes
No
Yes
0.44
0.14
No
0.02
0.40
If a single adult is selected from the large group, find the probabilities of the events
defined below. The adult
(a) needs glasses.
(b) needs glasses but does not use them.
(c) uses glasses whether the glasses are needed or not.
4. (i) Let a discrete sample space be given by
N = {W1, W2, W3, W4},
and let a probability measure P on be given by
P(w1) = 0.2, P(w2) = 0.2, P(w3) = 0.5, P(wa) = 0.1.
Consider the random variables X1, X2 → R defined by
X₁(w1) = 1, X₁(w2) = 2,
X2(w1) = 2, X2 (w2) = 2,
Find the joint distribution of X1, X2.
(ii)
X1(W3) = 1, X₁(w4) = 1,
X2(W3) = 1, X2(w4) = 2.
[4 Marks]
Let Y, Z be random variables on a probability space (, F, P).
Let the random vector (Y, Z) take on values in the set [0, 1] x [0,2] and let the
joint distribution of Y, Z on [0, 1] x [0,2] be given by
1
dPy,z (y, z) ==(y²z+yz2) dy dz.
harks 12 Find the distribution Py of the random variable Y.
[8 Marks]
marks 11
3
3/4 x 1/4
1.
There are 4 balls in an urn, of which 3 balls are white and 1 ball is
black. You do the following:
draw a ball from the urn at random, note its colour, do not return the
ball to the urn;
draw a second ball, note its colour, return the ball to the urn;
finally draw a third ball and note its colour.
(i) Describe the corresponding discrete probability space
(Q, F, P).
[9 Marks]
(ii)
Consider the following event,
A: Among the first and the third balls, one ball is white, the other is black.
Write down A as a subset of the sample space and find its probability, P(A).
[2 Marks]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.