ELEM.PRIN.OF CHEMICAL PROC.-W/ACCESS
ELEM.PRIN.OF CHEMICAL PROC.-W/ACCESS
4th Edition
ISBN: 9781119330745
Author: FELDER
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 5, Problem 5.32P
Interpretation Introduction

(a)

Interpretation:

Calculate the mass and weight of the helium in the balloon.

Concept introduction:

The Ideal Gas Law is defined as,

PV=nRT

Where, the volume (V) occupied by ‘n’ moles of any gas has a pressure (P) at temperature (T) in Kelvin and ‘R’ = Gas constant

Archimedes’ Principle

According to Archimedes' principle the upward buoyant force experienced by a body immersed in a fluid is equal to the weight of the fluid displaced by that body.

Interpretation Introduction

(b)

Interpretation:

Calculate the force exerted on the balloon restraining cable.

Concept introduction:

The Ideal Gas Law is defined as,

PV=nRT

Where, the volume (V) occupied by ‘n’ moles of any gas has a pressure (P) at temperature (T) in Kelvin and ‘R’ = Gas constant

Archimedes’ Principle

According to Archimedes' principle the upward buoyant force experienced by a body immersed in a fluid is equal to the weight of the fluid displaced by that body.

Interpretation Introduction

(c)

Interpretation:

The initial acceleration of the balloon should be estimated.

Concept introduction:

The Ideal Gas Law is defined as,

PV=nRT

Where, the volume (V) occupied by ‘n’ moles of any gas has a pressure (P) at temperature (T) in Kelvin and ‘R’ = Gas constant

Archimedes’ Principle

According to Archimedes' principle the upward buoyant force experienced by a body immersed in a fluid is equal to the weight of the fluid displaced by that body.

Interpretation Introduction

(d)

Interpretation:

The reason for balloon to stop rising should be explained. The factors need to calculate the altitude at which balloon stops should be explained.

Concept introduction:

The Ideal Gas Law is defined as,

PV=nRT

Where, the volume (V) occupied by ‘n’ moles of any gas has a pressure (P) at temperature (T) in Kelvin and ‘R’ = Gas constant

Archimedes’ Principle

According to Archimedes' principle the upward buoyant force experienced by a body immersed in a fluid is equal to the weight of the fluid displaced by that body.

Interpretation Introduction

(e)

Interpretation:

The change when when the helium is heated in the balloon should be explained.

Concept introduction:

The Ideal Gas Law is defined as,

PV=nRT

Where, the volume (V) occupied by ‘n’ moles of any gas has a pressure (P) at temperature (T) in Kelvin and ‘R’ = Gas constant

Archimedes’ Principle

According to Archimedes' principle the upward buoyant force experienced by a body immersed in a fluid is equal to the weight of the fluid displaced by that body.

Blurred answer
Students have asked these similar questions
A flat-sheet membrane of thickness, L, and surface area, S, separates two fluids (see figure). The concentration on the upstream side is maintained at C_A0 while that on the downstream side is maintained at zero. The membrane is loaded with an immobilized enzyme that converts substrate A to product B according to a zero order reaction mechanism given by:R_A=-k_0"' (d) What is the flux, N_A, at the downstream surface (z=L)?  (e) Under what condition will the flux at z=L be equal to zero?  (f) At the condition in (e), what can you say about the diffusion time relative to the reaction time?
Develop a purification train for a facility where first process is a perfusion upstream bioreactors 500L producing low cell culture titer of   approx. 0.5 g/L perfusing at 2 VVD over 30 days.  The current facility has a secondary clarification process for the perfusate coming from the bioreactor. Secondary depth filtration clarification capacity of 200 L/m2. Identify the correct filter area, and system (pump) requirements for the process scale.  Also identify optimal flowrates for flushing and processing, total process time, buffer volumes required. Assume 10 L/m2 holdup of the depth filters identify the size of the tank required to collect the filtrate. Average yield of overall clarification is 80% estimate the titer in the clarified pool.
Bioprocessing/ Protein isolation and purification. Develop a purification train for a facility where first process is a perfusion upstream bioreactors 500L producing low cell culture titer of   approx. 0.5 g/L perfusing at 2 VVD over 30 days.  The current facility has a secondary clarification process for the perfusate coming from the bioreactor. Secondary depth filtration clarification capacity of 200 L/m2. Identify the correct filter area, and system (pump) requirements for the process scale.  Also identify optimal flowrates for flushing and processing, total process time, buffer volumes required. Assume 10 L/m2 holdup of the depth filters identify the size of the tank required to collect the filtrate. Average yield of overall clarification is 80% estimate the titer in the clarified pool.

Chapter 5 Solutions

ELEM.PRIN.OF CHEMICAL PROC.-W/ACCESS

Ch. 5 - Prob. 5.11PCh. 5 - Prob. 5.12PCh. 5 - Prob. 5.13PCh. 5 - Prob. 5.14PCh. 5 - Prob. 5.15PCh. 5 - Prob. 5.16PCh. 5 - Prob. 5.17PCh. 5 - Prob. 5.18PCh. 5 - Prob. 5.19PCh. 5 - A device has been designed to measure the flow...Ch. 5 - Prob. 5.21PCh. 5 - Prob. 5.22PCh. 5 - Spray drying is a process in which a liquid...Ch. 5 - Prob. 5.24PCh. 5 - Lewis12 describes the hazards of breathing air...Ch. 5 - A stream of air at 35°C and a gauge pressure of...Ch. 5 - Prob. 5.27PCh. 5 - In froth ?otation, air is bubbled through an...Ch. 5 - Prob. 5.29PCh. 5 - Prob. 5.30PCh. 5 - Bread is typically made by ?rst dissolving...Ch. 5 - Prob. 5.32PCh. 5 - Prob. 5.33PCh. 5 - Prob. 5.34PCh. 5 - Prob. 5.35PCh. 5 - Prob. 5.36PCh. 5 - Prob. 5.37PCh. 5 - Prob. 5.38PCh. 5 - Prob. 5.39PCh. 5 - A spray-drying operation similar to that described...Ch. 5 - Prob. 5.41PCh. 5 - Fermentation is a biochemical process in which a...Ch. 5 - Prob. 5.43PCh. 5 - Prob. 5.44PCh. 5 - Ethane at 25°C and 1.1 atm (abs) flowing at a rate...Ch. 5 - The ?ow of air to a gas-?red boiler furnace is...Ch. 5 - Prob. 5.47PCh. 5 - The oxidation of nitric oxide NO+12O2NO2 takes...Ch. 5 - Prob. 5.49PCh. 5 - 5.50.19 In chemical vapor deposition (CVD), a...Ch. 5 - A gas turbine power plant receives a shipment of...Ch. 5 - Prob. 5.52PCh. 5 - 5.53.20 Chemicals are stored in a laboratory with...Ch. 5 - Prob. 5.54PCh. 5 - Prob. 5.55PCh. 5 - A stream of ho dry nitrogen flows through a...Ch. 5 - Prob. 5.57PCh. 5 - You have purchased a gas cylinder that is supposed...Ch. 5 - The current global reliance on fossil fuels for...Ch. 5 - Two humid gas streams are combined in a heated...Ch. 5 - Most of the concrete used in the construction of...Ch. 5 - The ultimate analysis of a No. 4 fuel oil is 86.47...Ch. 5 - A stream of liquid n-pentane flows at a rate of...Ch. 5 - Alka-Seltzer( is an over-the-counter medicine used...Ch. 5 - Hydrogen sul?de has the distinctive unpleasant...Ch. 5 - The quantity of sulfuric acid used globally places...Ch. 5 - A small power plant produces 500 MW of electricity...Ch. 5 - You have been assigned the task of measuring the...Ch. 5 - Prob. 5.69PCh. 5 - Methanol is synthesized from carbon monoxide and...Ch. 5 - Prob. 5.71PCh. 5 - Prob. 5.72PCh. 5 - Steam reforming is an important technology for...Ch. 5 - A ?owchart of a methanol synthesis process is...Ch. 5 - The measured volumetric flow rate of ethane at...Ch. 5 - Prob. 5.76PCh. 5 - Methanol is to be delivered to a process unit at a...Ch. 5 - Prob. 5.78PCh. 5 - Prob. 5.79PCh. 5 - Prob. 5.80PCh. 5 - Prob. 5.81PCh. 5 - Prob. 5.82PCh. 5 - Prob. 5.83PCh. 5 - Prob. 5.84PCh. 5 - Prob. 5.85PCh. 5 - Prob. 5.86PCh. 5 - Prob. 5.87PCh. 5 - Prob. 5.88PCh. 5 - Prob. 5.89PCh. 5 - A fuel cell is an electrochemical device that...Ch. 5 - In a metered-dose inhaler (MDI), such as those...Ch. 5 - Prob. 5.92PCh. 5 - Prob. 5.93PCh. 5 - Approximately 150 SCFM (standard cubic feet per...Ch. 5 - Prob. 5.95PCh. 5 - Prob. 5.96PCh. 5 - Prob. 5.97PCh. 5 - The product gas from a coal gasification plant...Ch. 5 - Prob. 5.99PCh. 5 - Prob. 5.100PCh. 5 - A gas mixture consisting of 15.0 mole% methane....Ch. 5 - A system has been devised to store acetonitrile...Ch. 5 - Prob. 5.103PCh. 5 - Prob. 5.104P
Knowledge Booster
Background pattern image
Chemical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The