![Power System Analysis & Design](https://www.bartleby.com/isbn_cover_images/9781305636187/9781305636187_largeCoverImage.gif)
Power System Analysis & Design
6th Edition
ISBN: 9781305636187
Author: Glover, J. Duncan, Overbye, Thomas J. (thomas Jeffrey), Sarma, Mulukutla S.
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 5.31P
A 500-kV, 300-km, 6()-Hz, three-phase overhead transmission line, assumed to be lossless, has a series inductance of 0.97 mH/krn per phase and a shunt capacitance of
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
Show that the input impedance of a lossy transmission line of length L connected to a load
impedance of Z is given by
Z₁Cosh(yL) + ZoSinh(yL)
Zin = Zo ZoCosh(YL) + Z₁Sihh(YL)
ex
Where Cosh(x) =
and Sinh(x) =
are the hyperbolic cosine and sine, respectively.
2
2
A sinusoidal source of V = 10 and Z = 50 - j40 is connected to a 60 lossless
transmission line of length 100 m with ẞ = 0.25. What is the Thevenin's equivalent of this
system seen looking into the load end of the transmission line?
2. On a distortionless transmission line, the voltage wave is given by
v(L,t) = 110e0.005L Cos(10³t + 2L) +55e-0.005L Cos(108t-2L)
where L is the length of the transmission line as measured from the load. If Z = 30002, find
a,ẞ, vp, and Zo.
Chapter 5 Solutions
Power System Analysis & Design
Ch. 5 - Representing a transmission line by the two-port...Ch. 5 - The maximum power flow for a lossy line is...Ch. 5 - Prob. 5.21MCQCh. 5 - A 30-km, 34.5-kV, 60-Hz, three-phase line has a...Ch. 5 - A 200-km, 230-kV, 60-Hz, three-phase line has a...Ch. 5 - The 100-km, 230-kV, 60-Hz, three-phase line in...Ch. 5 - The 500-kV, 60-Hz, three-phase line in Problems...Ch. 5 - A 40-km, 220-kV, 60-Hz, three-phase overhead...Ch. 5 - A 500-km, 500-kV, 60-Hz, uncompensated three-phase...Ch. 5 - The 500-kV, 60-Hz, three-phase line in Problems...
Ch. 5 - A 350-km, 500-kV, 60-Hz, three-phase uncompensated...Ch. 5 - Rated line voltage is applied to the sending end...Ch. 5 - A 500-kV, 300-km, 6()-Hz, three-phase overhead...Ch. 5 - The following parameters are based on a...Ch. 5 - Consider a long radial line terminated in its...Ch. 5 - For a lossless open-circuited line, express the...Ch. 5 - A three-phase power of 460 MW is transmitted to a...Ch. 5 - Prob. 5.55PCh. 5 - Consider the transmission line of Problem 5.18....Ch. 5 - Given the uncompensated line of Problem 5.18, let...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 50 transmission line is to be connected to a 72 load through a 1/4 quarter wave matching transformer. (a) What must be the characteristic impedance of the transmission line that is used to form the quarter wave transformer? (b) If the frequency of operation is 7 MHz and the phase velocity through the quarter wave section is 2c/3, what is the length of the quarter wave section? You may assume the transmission line forming the quarter wave section is lossless.arrow_forwardWhat is the SWR on a transmission line if the forward power arriving at the load is 5W but only 4.6W is dissipated by the load?arrow_forwardPlease do not send the AI solution as it is full of errors. Solve the question yourself, please. Q- If you have a unipolar winding stepper motor, draw the driver and the control circuit. In subject (A stepper motor driver circuit and direction control using Arduino microcontroller)arrow_forward
- 1- Draw the complete circuit diagram that illustrates the experiment concept as in figure 5 by showing the pins number. Show the following in your plot (Arduino board, steppermotor coils and the driver circuit). Note: The drawing should be on paper and not with artificial intelligence, please.arrow_forwardIn the circuit shown, find the following: 1) The current Ix. 2) The average power dissipated in the capacitor. 3) The total average power dissipated in the two resistors. 4) The average power of the independent voltage source and specify whether it is supplied or absorbed. 5) The total impedance seen from the terminals of the independent voltage source (Z=V/I). 20 -201 12/00V(+ 21 www 202arrow_forward2- If you have a unipolar winding stepper motor, draw the driver and the control circuit. Note: The drawing is on paper.arrow_forward
- Given the following reaction system, where Xo is the input, i.e u(t) = k₁ × Xo: $Xo -> x1; k1*Xo x2; k2*x1 x1 2 x2 ->%; k3*x2^2 x2 ->; k4*x2 Xo 1; k1 = 0.4 k2 4.5; k3 = 0.75 k4= 0.2 a) Build the model in Tellurium and run a simulation. Compute the Jacobian at steady state using the method getFull Jacobian(). Make sure you are at steady state! b) Write out the values for n and p c) Write out the differential equations. d) Write out the state space representation in terms of the rate constants etc. e) Compute the values in the Jacobian matrix from d) by substituting the values of the rate constants etc and any data you need from the simulation. f) Confirm that the Jacobian you get in e) is the same as the one computed from the simulation in a). g) Is the system stable or not? If you find an eigenvalue of zero, that means the system is marginally stable. You can get the eigenvalues using the tellurium method r.getFullEigenvalues()arrow_forwardSolve by Pen and Paper not using chatgpt or AIarrow_forwardYou just got a job at Shin-Etsu Chemical growing Si crystals with different dopants. Howmuch Ga needs to be added to 800 kg of Si melt to achieve a 5-10 Ω.cm (measured at midheight) Si CZ crystal with the following characteristics: height: 7 ft, width: 12 inchesdiameter. Assume, angular rotation 10 RPM, melt viscosity 0.1 poise, pull velocity 2mm/min.a. Generate a plot of the doping distribution throughout the length of the crystal (CGa vs. fs ).b. If a second crystal were to be pulled out of the melt without replenishment of silicon nordopant what would be the average resistivity of this crystal (or resistivity at mid height)arrow_forward
- DO NOT USE AI OR CHAT GPT NEED HANDWRITTEN SOLUTIONarrow_forward7. Complete the following problems for the circuit below. (a) When VDD = 120V, What is the voltage drop V1 across the 7Ω resistor? (b) If the voltage source VDD is set to obtain I1 = 2A, find the value of VDD. (c) If I1 = 100A, What is the value of I2arrow_forwarda) In terms of n and p, how many state variables and how many inputs can you see in the system below? dx1 =x12x2 + 9u1 dt dx2 =x1+x3+3u2 dt dx3 = 4x1 +5x2 - 12x3 dt b) Derive the state space representation for the above system c) Determine whether the system is stable or not.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305632134/9781305632134_smallCoverImage.gif)
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
Series compensation of long transmission lines; Author: Georg Schett;https://www.youtube.com/watch?v=smOqSxFBvVU;License: Standard Youtube License