PROCESS DYNAMIC+CONTROL-EBOOK>I<
PROCESS DYNAMIC+CONTROL-EBOOK>I<
4th Edition
ISBN: 2819480255712
Author: Seborg
Publisher: INTER WILE
Question
Book Icon
Chapter 5, Problem 5.24E
Interpretation Introduction

(a)

Interpretation:

The response Y(s) and the quantitative value of y(t) are to be derived.

Concept introduction:

For chemical processes, dynamic models consisting of ordinary differential equations are derived through unsteady-state conservation laws. These laws generally include mass and energy balances.

The process models generally include algebraic relationships which commence from thermodynamics, transport phenomena, chemical kinetics, and physical properties of the processes.

For an additive process model, the output of the entire process is the sum of all the outputs of all the processes taking place internally of the system. Thus,

Y(s)=Y1(s)+Y2(s)++Yn(s)

Here, n is the number of internal processes taking place in the system.

For a function f(t), the Laplace transform is given by,

F(s)=[f(t)]=0f(f)estdt

Here, F(s) represents the Laplace transform, s is a variable that is complex and independent, f(t) is any function of time which is being transformed, and is the operator which is defined by an integral.

f(t) is calculated by taking inverse Laplace transform of the function F(s).

Interpretation Introduction

(b)

Interpretation:

The response in part (a) is to be simulated and its major characteristics are to be identified.

Concept introduction:

For chemical processes, dynamic models consisting of ordinary differential equations are derived through unsteady-state conservation laws. These laws generally include mass and energy balances.

The process models generally include algebraic relationships which commence from thermodynamics, transport phenomena, chemical kinetics, and physical properties of the processes.

For a large value of time, the asymptotic value of y(t) can be calculated using Final Value theorem (FVM) as shown below:

limty(t)=lims0[sY(s)]   ..........(1)

This theorem is applicable only if lims0[sY(s)] exists for all values of Re(s)0.

Blurred answer
Students have asked these similar questions
At a Pressure of 200 mm Hg, match the substance with the boiling temperature. 69.50°C 1. Benzene 1.92°C 2. Toluene 41.94°C 3. n-Pentane 4. n-Hexane 31.61°C
At a Pressure of 400 mm Hg, match the substance with the boiling temperature. 62.89°C 1. Styrene 122.69°C 2. Ethanol 3. Toluene 89.48°C 4. Benzene 60.61°C
8. A gas is admitted at a rate of 0.015 m³s-¹ to a vertical glass pipe with an inside diameter of 50 mm. The gas bubbles that form travel with a velocity of 32 ms-¹. Determine the gas void fraction and the velocity of the liquid if the volumetric flow is 2.5 x 10-5 m³s-1. Answer: 0.24, 1.7 ms-1 9 Characterise the main concepts of a homogeneous flow model sepa-
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The