Electric Circuits, Student Value Edition Format: Unbound (saleable)
Electric Circuits, Student Value Edition Format: Unbound (saleable)
11th Edition
ISBN: 9780134747170
Author: NILSSON, James W.^riedel, Susan
Publisher: Prentice Hall
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 51P

a.

To determine

Show that the percent error in the approximation of vo is ΔR(R+Rf)R(R+2Rf).

b.

To determine

Calculate the percent error in vo

Blurred answer
Students have asked these similar questions
An inner-city electric bus with 7,200kg weight and average speed of 72 km/hour operates using a hybrid power source of lithium-ion battery pack and a bank of super capacitor. equipped with a lithium battery pack and a bank of supercapacitor. The energy content of the supercapacitor bank is twice the regenerative breaking energy of the electric bus at average speed. The electric bus commutes 490 km per charged battery and consumes 400 Wh/km.   Design the supercapacitor bank to provide 100V output, based on supercapacitor cells with 3600F capacitance and 2V.                                           Calculate the energy density of the supercapacitor at the cell level, assume cells with 10cm diameter and 15 cm height.                                             3. Design the battery pack for the electric bus by assuming that the energy of regenerative breaking will not be used for commuting but used to run the vehicle’s accessories. The unit cell of the battery pack is a lithium-ion…
A rod coincident with the z-axis extends from 0 to -L.  If the rod carries a uniform charge density of pL (a) calculate the electric field intensity at a point h on the z-axis.  (b) Use your answer to show that when h>>L the rod behaves as a point charge of value plL . (c) How much larger than the length of the rod must h be in order that the answer to part b) is a reasonably accurate estimate.
The separation of two point charges with charges Q1=36pC  and ,Q2=9pC respectively, is 3 cm. If a third point charge Q3 is placed on the line joining Q1 and Q2 at a distance d from Q1 find Q3 and d that ensures that the force on all charges is zero.

Chapter 5 Solutions

Electric Circuits, Student Value Edition Format: Unbound (saleable)

Ch. 5 - The op amp in the circuit in Fig. P5.4 is...Ch. 5 - The op amp in the circuit in Fig. P5.5 is ideal....Ch. 5 - Find iL (in milliamperes) in the circuit in Fig....Ch. 5 - Prob. 7PCh. 5 - Design an inverting amplifier with a gain of 2.5,...Ch. 5 - Design an inverting amplifier with a gain of 4....Ch. 5 - The op amp in the circuit in Fig. P5.10 is...Ch. 5 - The op amp in the circuit shown in Fig. P5.11 is...Ch. 5 - The op amp in Fig. P5.12 is ideal. What circuit...Ch. 5 - Design an inverting-summing amplifier using a 120...Ch. 5 - Prob. 14PCh. 5 - Design an inverting-summing amplifier so...Ch. 5 - The op amp in Fig. P5.16 is ideal. Find vo if va –...Ch. 5 - Prob. 17PCh. 5 - The op amp in the circuit of Fig. P5.18 is...Ch. 5 - Prob. 19PCh. 5 - The op amp in the circuit shown in Fig. P5.20 is...Ch. 5 - Prob. 21PCh. 5 - Prob. 22PCh. 5 - The op amp in the circuit of Fig. P5.23 is...Ch. 5 - The circuit in Fig. P5.24 is a noninverting...Ch. 5 - The op amp in the circuit of Fig. P5.25 is...Ch. 5 - Prob. 26PCh. 5 - Prob. 27PCh. 5 - Prob. 28PCh. 5 - Prob. 29PCh. 5 - Select the values of Rb and Rf in the circuit in...Ch. 5 - The op amp in the adder-subtracter circuit shown...Ch. 5 - In the difference amplifier shown in Fig. P5.32,...Ch. 5 - Prob. 33PCh. 5 - The op amp in the circuit of Fig. P5.34 is...Ch. 5 - Assume that the ideal op amp in the circuit seen...Ch. 5 - Prob. 37PCh. 5 - Show that when the ideal op amp in Fig. P5.38 is...Ch. 5 - The op amps in the circuit in Fig. P5.39 are...Ch. 5 - The two op amps in the circuit in Fig. P5.40 are...Ch. 5 - The circuit inside the shaded area in Fig. P5.41...Ch. 5 - Assume that the ideal op amp in the circuit in...Ch. 5 - Derive Eq. 5.31. (5.31) Ch. 5 - Prob. 44PCh. 5 - Prob. 45PCh. 5 - Repeat Problem 5.45 assuming an ideal op...Ch. 5 - Assume the input resistance of the op amp in Fig....Ch. 5 - Prob. 48PCh. 5 - Suppose the strain gages in the bridge in Fig....Ch. 5 - For the circuit shown in Fig. P5.50, show that if...Ch. 5 - Prob. 51PCh. 5 - Prob. 52PCh. 5 - Prob. 53P
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Differential Amplifiers Made Easy; Author: The AudioPhool;https://www.youtube.com/watch?v=Mcxpn2HMgtU;License: Standard Youtube License