
Concept explainers
(a)
Interpretation:
The difference in the behaviour of a sample of gas from a sample of liquids when the sample is transferred from one container to a larger one is to be explained.
Concept introduction:
Gases have weak intramolecular forces of attraction in comparison to liquids. The weak intramolecular forces lead to very less attraction among the gaseous particles resulting in its free motion.
Liquids have stronger intramolecular forces of attraction than gases and this property of liquids make it highly fluid in nature.
(a)

Answer to Problem 5.1P
The volume of the liquids has definite volume while the volume of gases doesn’t have a fixed volume. This is so because the volume of gas is dependent on the volume of the containers.
Explanation of Solution
The molecule of the gas moves more freely than the solid and liquids. The gas doesn’t have a definite shape and volume. The liquids have a definite volume but don’t have a fixed shape.
The volume of the gas is dependent on the volume of the containers, the volume of gas is increased as the volume of the containers increases while the liquids have fixed volume. This is so because the intermolecular forces between the gaseous molecules are weaker so, the molecules are move very fast than liquids molecules.
The volume of gases doesn’t have a fixed volume but the volume of liquids have a definite volume.
(b)
Interpretation:
The difference in the behaviour of a sample of gas from a sample of liquids when the sample heated in an expandable container is to be explained.
Concept introduction:
Gases have weak intramolecular forces of attraction in comparison to liquids. The weak intramolecular forces lead to very less attraction among the gaseous particles resulting in its free motion.
Liquids have stronger intramolecular forces of attraction than gases and this property of liquids make it highly fluid in nature.
The volume of the gas is dependent on the temperature, as the temperature increases the volume increase.
(b)

Answer to Problem 5.1P
If the sample of gas is rapidly heated in the expandable container, the volume of the gas is increased but the volume of the liquids molecule will be the same.
Explanation of Solution
The gas volume will be changed significantly with temperature. When a sample of gas is rapidly heated, the volume of expandable containers having the gas is increased. This is so because the speed of the molecule is increased and result in more collision on the wall of the container. More the collisions on the container wall, more will be the pressure exerted by the gas particles. This results to increase the volume of the gas.
When a sample of liquid is rapidly heated, the volume of expandable containers having liquids will not be changed.
As temperature increases, the volume of expandable containers having the gas is increased.
(c)
Interpretation:
The difference in the behaviour of a sample of gas from a sample of liquids when the external force applied to the piston of an expandable container is to be explained.
Concept introduction:
Gases have weak intramolecular forces of attraction in comparison to liquids. The weak intramolecular forces lead to very less attraction among the gaseous particles resulting in its free motion.
Liquids have stronger intramolecular forces of attraction than gases and this property of liquids make it highly fluid in nature.
The volume of the gas is inversely proportional to the pressure, as the pressure increases the volume decrease.
(c)

Answer to Problem 5.1P
As the pressure increases, the volume of the gas decreases while the volume of the liquid will be the same.
Explanation of Solution
The gas volume will be changed significantly with pressure. The sample of gas is present in the cylinder with a piston, as the external force applied on the piston increases, the volume of gas decreases. This is so because gases are compressible. As the pressure increases, the volume of the liquids doesn’t change because the liquids are incompressible.
Gases are compressible and the liquids are incompressible.
Want to see more full solutions like this?
Chapter 5 Solutions
CHEMISTRY:MOLECULAR NATURE...-ALEKS 360
- Using Benzene as starting materid show how each of the Following molecules Contel Ve syntheswed CHI 9. b -50311 с CHY 503H Ночто d. อ •NOV e 11-0-650 NO2arrow_forwardThe molecule PYRIDINE, 6th electrons and is therefore aromatre and is Assigned the Following structure contering Since aromatk moleculoy undergo electrophilic anomatic substitution, Pyridine shodd undergo The Following reaction + HNO3 12504 a. write all of the possible Mononitration Products that could Result From this reaction 18. Bared upon the reaction mechanison determime which of these producty would be the major Product of the hegetionarrow_forwarda. Explain Why electron withdrawing groups tend to be meta-Directors. Your answer Should lyclude all apropriate. Resonance contributing Structures fo. Explain why -ll is an outho -tura drccton even though chlorine has a very High Electronegativityarrow_forward
- 9. Write Me product as well as the reaction Mechanism For each of the Following Vanctions +H₂504 4.50+ T C. +212 Fellz 237 b. Praw the potential energy Diagrams For each OF Mese Rauctions and account For any differences that appear in the two potential Puergy Diagrams which of here two reactions 19 Found to be Reversable, Rationalice your answer based upon the venation mechanisms and the potential energy diagrams.arrow_forward9. Write Me product as well as the reaction Mechanism For each of the Following Veritious +H2504 4.50+ + 1/₂ Felly ◎+ 7 b. Praw he potential energy Diagrams For each OF Mese Ronctions and account for any differences that appeak in the two potential Puergy Diagramsarrow_forwardDraw the major product of this reaction. Ignore inorganic byproducts. Incorrect, 3 attempts remaining 1. excess Br2, NaOH 2. neutralizing workup Qarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





