
Concept explainers
Interpretation:
The distance between molecules of water at given conditions has to be estimated and commented on results.
Concept Introduction:
Ideal gas is the most usually used form of the ideal gas equation, which describes the relationship among the four variables P, V, n, and T. An ideal gas is a hypothetical sample of gas whose pressure-volume-temperature behavior is predicted accurately by the ideal gas equation.

Explanation of Solution
To calculate the moles of water vapour per liter using the ideal gas equation
Eventually want to find the distance between molecules. Therefore, let’s convert moles to molecules, and convert liters to a volume unit that will allow us to get to distance (
This can be the number of ideal gas molecules in a cube that is 1 m on each side. Assuming an equal distribution of molecules along the three mutually perpendicular directions defined by the cube, a linear density in one direction may be found:
This can be the number of molecules on a line 1 m in length. The distance between each vapour molecule is given by:
Assuming a water molecule to be a sphere with a diameter of 0.3 nm, the water molecules are separated by over 12 times their diameter,
A similar calculation can be done for liquid water. Starting with density, we convert to molecules per cubic meter.
This is the number of liquid water molecules in 1 m3. From this point, the calculation is the same as that for water vapor, and the space between liquid molecules is found using the same assumptions.
Assuming a water molecule to be a sphere with a diameter of 0.3 nm, to one significant figure, water molecules are packed very closely together in the liquid, but much farther apart in the steam.
The number density of water molecules and the number of molecules in one direction was calculated.
Want to see more full solutions like this?
Chapter 5 Solutions
Chemistry
- =Naming benzene derivatives Name these organic compounds: structure C1 CH3 name ☐ CH3 ப C1 × ☐arrow_forwardBlocking Group are use to put 2 large sterically repulsive group ortho. Show the correct sequence toconnect the reagent to product with the highest yield possible. * see image **NOTE: The compound on the left is the starting point, and the compound on the right is the final product. Please show the steps in between to get from start to final, please. These are not two different compounds that need to be worked.arrow_forwardI dont understand this.arrow_forward
- Can you please explain this prooblem to me, show me how the conjugation is added, did I add them in the correct places and if so please show me. Thanks!arrow_forwardBasic strength of organic bases.arrow_forwardNucleophilic Aromatic Substitution: What is the product of the reaction? What is the name of the intermediate complex? *See imagearrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning




