Solid Waste Engineering
Solid Waste Engineering
3rd Edition
ISBN: 9781305888357
Author: Worrell
Publisher: Cengage
bartleby

Concept explainers

Question
Book Icon
Chapter 5, Problem 5.13P
To determine

(a)

The recovery of plastic B in the overflow.

Expert Solution
Check Mark

Answer to Problem 5.13P

The recovery of plastic B in the overflow is 92.1% .

Explanation of Solution

Given:

The feed rate is 38kg/h .

The overflow rate is 35kg/h .

Concept Used:

Write the equation to calculate percentage of recovery

  PRB=(x1x2)×100   ...... (I).

Here, the percentage of recovery of plastic B is PRB , overflow rate is x1 and the feed rate is x2 .

Calculation:

Calculate the percentage of recovery of plastic B.

Substitute for 35kg/h

  x1 and 38kg/h for x2 in Equation (I).

  PRB=( 35 kg/h 38 kg/h )×100=0.921×100=92.1%

Conclusion:

Thus, the recovery of plastic B in the overflow is 92.1% .

To determine

(b)

The purity of plastic B in the overflow.

Expert Solution
Check Mark

Answer to Problem 5.13P

The purity of plastic B in the overflow is 60.3% .

Explanation of Solution

Given:

The overflow rate of plastic A is 5kg/h .

The overflow rate of plastic B is 35kg/h .

The overflow rate of plastic C is 18kg/h .

Concept Used:

Write the equation to calculate percentage of purity.

  PPB=(x1x1+y1+z1)×100   ...... (II).

Here, the percentage of recovery of plastic B is PPB , overflow rate of plastic A, B and C are x1 , y1 and z1 respectively.

Calculation:

Calculate the percentage of purity of plastic B.

Substitute 35kg/h for x1 , 5kg/h for y1 and 18kg/h for z1 in Equation (II).

  PPB=( 35 kg/h ( 35+5+18 ) kg/h )×100=0.603×100=60.3% .

Conclusion:

Thus, the purity of plastic B in the overflow is 60.3% .

To determine

(c)

The time taken by the plastic B to reach the top.

Expert Solution
Check Mark

Answer to Problem 5.13P

The time taken by plastic B to reach the top is 220.19s .

Explanation of Solution

Given:

The density of fluid is 1.2gm/cm3 .

The viscosity of fluid is 0.015poise .

The diameter of plastic is 0.5mm .

The distance is 2m .

The density of material is 1.1gm/cm3 .

Concept Used:

Write the equation to calculate the time taken.

  t=Lv   ...... (III).

Here, the time is t , distance is L , and terminal velocity is v .

Calculation:

Calculate the terminal velocity by using Stock’s Law.

  v=d2g(ρρs)18μ   ...... (IV).

Here, the diameter of particle is d , the acceleration due to gravity is g , the density of fluid is ρ , the density of material is ρs , and the viscosity of the fluid is μ .

Calculate the terminal velocity.

Convert the unit of viscosity from poise to kg/m/s .

  μ=(0.015poise)( 0.1 kg/ m/s 1poise)=1.5×103kg/m/s

Substitute 0.5×103m for d , 9.81m/s2 for g , 1.2×103kg/m3 for ρ , 1.1×103kg/m3 for ρs and 1.5×103kg/m/s for μ in Equation (IV).

  v= ( 0.5× 10 3 m )2×9.81m/ s 2×( 1.2× 10 3 kg/ m 3 1.1× 10 3 kg/ m 3 )( 18×1.5× 10 3 kg/ m/s )=2.4525× 10 4kg/ s 20.027kg/m/s=9.083×103m/s

Calculate the time taken by the plastic B to reach the top.

Substitute 9.083×103m/s for v and 2m for L in Equation (III).

  t=2m9.083× 10 3m/s=220.19s

Conclusion:

Thus, the time taken by plastic B to reach the top is 220.19s .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ASSIGNMENT. 1. The following figure is a billboard sketch, design the members. Hint, the billboard is usually designed against wind loads and its own self weight. For the dimensions, you can visit existing billboards to see usual dimensions. 3D View
In order to solve the frame given below with the Force Method, remove restraints from joints A and G and draw only the bending moment diagrams Mo, M₁, M2 and M3 for this case. (25 Pts.) Note: Only bending moment diagrams that are used for the solution are required. There is no need to do any further calculations. 4 kN B I E D 2 kN/m H 3 m 3 m 4 m + 2 m 4m
please show complete solution with formula
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning