(a)
The critical speed of the trommel screen.
Answer to Problem 5.11P
Explanation of Solution
Given:
The diameter of trommel screen is
The length of trommel screen is
The angle of inclination is
Concept Used:
Write theexpression to calculate the critical speed of trommel screen.
Here, the acceleration due to gravity is
Calculation:
Calculate the critical speed of trommel screen.
Substitute
Conclusion:
Thus, the critical speed of trommel screen is
(b)
The type of movement of MSW in the trommel screen.
Answer to Problem 5.11P
The movement of MSW in trommel screen is cataracting.
Explanation of Solution
Given:
The speed of trommelis
The feed rate is
Calculation:
The movement of MSW is determined by using the relation
Here,
Hence the movement of MSW is either cascading or cataracting.
The critical speed and the fraction of the screen occupied by the refuse are related which gives the process of movement of MSW.
Write the equation to calculate the bulk volume.
Here, the bulk volume of trommel screen is
Consider a single particle in the screen.
The following figure shows the force analysis diagram.
Figure-(1)
Here, gravity is
Write the equilibrium equation for the x and y axis as shown in Figure-(1).
Here, the coefficient of friction is
Write the equation to calculate acceleration.
Here, the acceleration is
Substitute
Calculate time for particle to move from end to end.
Here, the length is
Substitute
Calculate the volume occupied by the solids and the air spaces between the solids.
Here, the mass flow rate is
Convert the unit of
Convert the unit of time to
Substitute
Calculate the total volume inside the trommel screen.
Substitute
Calculate the bulk volume of trommel screen.
Substitute
The following graph shows critical speed and the fraction of the screen occupied by the refuse are related which gives the process of movement of MSW.
Figure-(2)
Since,
Conclusion:
The type of movement is calculated by equating time, bulk volume, mass flow, density, speed and feed rate.
Want to see more full solutions like this?
Chapter 5 Solutions
Solid Waste Engineering
- 14. Find the reaction R and the moment at the wall for the propped beam shown below using Point Load Analogous via Integration: 16 kN/m 000 4.5m 4.5marrow_forward13. Determine the moment at supports A and B of the fixed ended beam loaded as shown using Point Load Analogous via Integration: 10 kN/m 9 kN/m 3 m 3 m 12 kN/marrow_forwardHow does construction estimate inaccuracies lead to delays and complications that impact projects?arrow_forward
- Q5: Given the following system: น -3 y= [4 -2] +3u Generate a model with states that are the sum and difference of the original states.arrow_forward4. Draw a stress-strain curve (in tension and compression) for a reinforced concrete beam below. Label the important parts of the plot. Find the linear elastic approximation obtained using the transformed technique, and plot over the same strain ranges. 24" 4" 20" 16" f = 8,000 psi 8- #11 bars Grade 60 steel 4" (f, = 60 ksi and E₁ = 29000 ksi)arrow_forwardWhy is Historical Data important compared to other sourses of information when estimating construction projects?arrow_forward
- Need help, please show all work, steps, units and round to 3 significant figures. Thank you!!arrow_forwardNeed help. Find the answer to the boxes marked in red. Thanks!arrow_forwardFor the gravity dam shown in the figure, The following data are available: -Unit weight of concrete (Yconc) = 2.4 ton/m³ -Vertical upward earth quake factor (K,) = 0.1 -Neglect Wave pressure, silt pressure and ice force μ=0.65 a-Find heel and toe stresses (Pmin & Pmax) b-Is this structure safe against tension? c-Find the factor of safety against sliding and overturning (F.S, & F.Sover) 165 m 160 m t 10 m T I 4 m 50 100 marrow_forward
- For the gravity dam shown in the figure, The following data are available: -Unit weight of concrete (Yeone) 2.4 ton/m³ Vertical down ward earth quake factor (K,) = 0.1 Neglect Wave pressure, silt pressure and ice force The wind velocity (V)-45 Km/hr Straight length of water expanse (F) 75 Km =0.7 14-70m 3h T a- Find the factor of safety against sliding and overturning (F.Slid F.Sover) b- Find the toe and heel stresses (hma, and hmin.) c-Check tension. 8marrow_forwardQUESTION 2-(40 Points) In the case where other information is given in the figure, the wall is under the effect of a uniform lateral wind load of 0.7 kN/m2. Since the foundation is sized according to the safe bearing capacity of the soil and the safe bearing capacity remains the same, find the width of this foundation asymmetrically (with uniform base pressure). Draw the vertical section of the wall of the asymmetric foundation and write its dimensions and values on it. Draw the T and M diagrams along the width. The foundation thickness is the same in both cases. q=0.7 kN/m2 5 m R Duvar Nd=Wd 0.7 m T K 0 0.6 0.5 1.7 m Yb-24 kN/m3 0.6 m T + foundationarrow_forwardCan you pls. Explain on how to get "BETA T" and "BETA C" on this study about VALUE OF TRAVEL TIME.arrow_forward
- Solid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,Construction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningEngineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,