Concept explainers
(a)
Interpretation:
The highest osmotic pressure of the gas has to be identified.
Concept introduction:
Osmotic pressure can be calculated by using following formula,
(b)
Interpretation:
When the passage of water molecules through the membrane to the given solution, the more diluted solution has to be identified.
Concept introduction:
Refer to part (a)
(c)
Interpretation:
For maintain an equilibrium flow of water molecules across the membrane by giving the external pressure to the solution. The solution has to be identified.
Concept introduction:
Refer to part (a)
(c)
Interpretation:
For maintain an equilibrium flow of water molecules across the membrane by giving the external pressure to the solution. The external pressure has to be calculated.
Concept introduction:
Refer to part (a)
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
CHEMICAL PRINCIPLES (LL) W/ACCESS
- Fluoridation of city water supplies has been practiced in the United States for several decades. It is done by continuously adding sodium fluoride to water as it comes from a reservoir. Assume you live in a medium-sized city of 150,000 people and that 660 L (170 gal) of water is used per person per day. What mass of sodium fluoride (in kilograms) must be added to the water supply each year (365 days) to have the required fluoride concentration of 1 ppm (part per million)that is, 1 kilogram of fluoride per 1 million kilograms of water? (Sodium fluoride is 45.0% fluoride, and water has a density of 1.00 g/cm3.)arrow_forwardFor each of the following pairs of solutions, select the solution for which solute solubility is greatest. a. Ammonia gas in water with P = 1 atm and T = 50C Ammonia gas in water with P = 1 atm and T = 90C b. Carbon dioxide gas in water with P = 2 atm and T = 50C Carbon dioxide gas in water with P = 1 atm and T = 50C c. Table salt in water with P = 1 atm and T = 60C Table salt in water with P = 1 atm and T = 50C d. Table sugar in water with P = 2 atm and T = 40C Table sugar in water with P = 1 atm and T = 70Carrow_forwardFor each of the following pairs of solutions, select the solution for which solute solubility is greatest. a. Oxygen gas in water with P = 1 atm and T = 10C Oxygen gas in water with P = 1 atm and T = 20C b. Nitrogen gas in water with P = 2 atm and T = 50C Nitrogen gas in water with P = 1 atm and T = 70C c. Table salt in water with P = 1 atm and T = 40C Table salt in water with P = 1 atm and T = 70C d. Table sugar in water with P = 3 atm and T = 30C Table sugar in water with P = 1 atm and T = 80Carrow_forward
- 3) Camphor (CoH160) melts at 179.8 °C, and it has a particularly large freezing point depression constant of 40.0 "C/m. When 0.186 g of an organic substance of unknown molar mass is dissolved in 22.10 g of liquid camphor, the freezing point of the mixture is found to be 176.7 C. What is the molar mass of the organic substance?arrow_forwardGive handwritten answerarrow_forwardIf you compare the solubilities of the noble gases in water,you find that solubility increases from smallest atomicweight to largest, Ar < Kr < Xe. Which of the followingstatements is the best explanation? (a) The heavier the gas, the more it sinks to the bottom ofthe water and leaves room for more gas molecules at thetop of the water.(b) The heavier the gas, the more dispersion forces it has,and therefore the more attractive interactions it haswith water molecules.(c) The heavier the gas, the more likely it is to hydrogenbondwith water.(d) The heavier the gas, the more likely it is to make a saturatedsolution in water.arrow_forward
- To obtain a precipitate which is useful for gravimetric analysis, the analyst tries to obtain conditions to encourage crystal growth, as opposed to the formation of a colloid. Which of the following statements aids in the formation of a crystalline precipitate and the formation of a colloidal precipitate? Drag your answers to the appropriate markers. (a) The solutions are made as dilute as practical to allow crystals to form slowly. (b) The addition of strong electrolytes (e.g. NaCl or HCl) in the analyte solution, prior to the precipitation reaction. (c) After the digestion of the precipitate, the hot solution is cooled down to room temperature gradually and kept undisturbed overnight. (d) The analyst selects the precipitate of the analyte with the Ksp less than 1 x 10 -15 (e) The Relative Supersaturation value of the analyte solution should be greater than 1 million upon the addition of the precipitating reagent. formation of colloidal precipitate favored formation of crystalline…arrow_forwardWhen 14.3 g of a certain molecular compound X are dissolved in 85.0 g of benzene C6H6, the freezing point of the solution is measured to be 0.5 °C. Calculate the molar mass of X. molal freezing point depression constant (Kf)°C·kg·mol−1 of benzen is 5.07 If you need any additional information on benzene, use only what you find in the ALEKS Data resource. Also, be sure your answer has a unit symbol, and is rounded to 2 significant digits.arrow_forwardDistinguish between water quality and hydrochemistry.arrow_forward
- At 432 °C, Keq = 0.00309 for the reaction: (a) What is the value of Keq for the reaction NOBr(g) NO(g) + 1/2 Br₂(g)? Kea NO(g) + 1/2 Br₂(g) → NOBr(g) (b) What is the value of Keq for the reaction 2 NO(g) + Br₂(g) = 2 NOBr(g)? Kea = (c) What is the value of Keq for the reaction 2 NOBr(g) 2 NO(g) + Br₂(g)? Kea =arrow_forwardThe equilibrium constant, Kc , for the reaction 2 SO2 (g) + O2 (g) → 2 SO3 (g) is 6.90 x 103 . (a) What is Kc for the reaction 2 SO3 (g) → 2 SO2 (g) + O2 (g) (b) What is Kc for the reaction SO2 (g) + 1/2 O2 (g) → SO3 (g)arrow_forwardCopper(I) ions in aqueous solution react with NH3 (aq) according to Cu+ (aq) + 2 NH3 (aq) · → Cu(NH3)2(aq) K₁ = 6.3 × 1010 Calculate the solubility (in g·L-¹) of CuBr(s) (Ksp = : 6.3 × 109) in 0.74 M NH3(aq). solubility of CuBr(s): g/Larrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning