FRICTION AND CLIMBING SHOES. Shoes made for the sports of bouldering and rock climbing are designed to provide a great deal of friction between the foot and the surface of the ground. Such shoes on smooth rock might have a coefficient of static friction of 1.2 and a coefficient of kinetic friction of 0.90. 5.116 For a person wearing these shoes, what’s the maximum angle (with respect to the horizontal) of a smooth rock that can be walked on without slipping? (a) 42°; (b) 50°; (c) 64°; (d) larger than 90°. 5.117 If the person steps onto a smooth rock surface that’s inclined at an angle large enough that these shoes begin to slip, what will happen? (a) She will slide a short distance and stop; (b) she will accelerate down the surface; (c) she will slide down the surface at constant speed; (d) we can’t tell what will happen without knowing her mass. 5.118 A person wearing these shoes stands on a smooth, horizontal rock. She pushes against the ground to begin running. What is the maximum horizontal acceleration she can have without slipping? (a) 0.20g; (b) 0.75g; (c) 0.90g; (d) 1.2g.
FRICTION AND CLIMBING SHOES. Shoes made for the sports of bouldering and rock climbing are designed to provide a great deal of friction between the foot and the surface of the ground. Such shoes on smooth rock might have a coefficient of static friction of 1.2 and a coefficient of kinetic friction of 0.90. 5.116 For a person wearing these shoes, what’s the maximum angle (with respect to the horizontal) of a smooth rock that can be walked on without slipping? (a) 42°; (b) 50°; (c) 64°; (d) larger than 90°. 5.117 If the person steps onto a smooth rock surface that’s inclined at an angle large enough that these shoes begin to slip, what will happen? (a) She will slide a short distance and stop; (b) she will accelerate down the surface; (c) she will slide down the surface at constant speed; (d) we can’t tell what will happen without knowing her mass. 5.118 A person wearing these shoes stands on a smooth, horizontal rock. She pushes against the ground to begin running. What is the maximum horizontal acceleration she can have without slipping? (a) 0.20g; (b) 0.75g; (c) 0.90g; (d) 1.2g.
FRICTION AND CLIMBING SHOES. Shoes made for the sports of bouldering and rock climbing are designed to provide a great deal of friction between the foot and the surface of the ground. Such shoes on smooth rock might have a coefficient of static friction of 1.2 and a coefficient of kinetic friction of 0.90.
5.116 For a person wearing these shoes, what’s the maximum angle (with respect to the horizontal) of a smooth rock that can be walked on without slipping? (a) 42°; (b) 50°; (c) 64°; (d) larger than 90°.
5.117 If the person steps onto a smooth rock surface that’s inclined at an angle large enough that these shoes begin to slip, what will happen? (a) She will slide a short distance and stop; (b) she will accelerate down the surface; (c) she will slide down the surface at constant speed; (d) we can’t tell what will happen without knowing her mass.
5.118 A person wearing these shoes stands on a smooth, horizontal rock. She pushes against the ground to begin running. What is the maximum horizontal acceleration she can have without slipping? (a) 0.20g; (b) 0.75g; (c) 0.90g; (d) 1.2g.
Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.
Lab-Based Section
Use the following information to answer the lab based scenario.
A student performed an experiment in an attempt to determine the index of refraction of glass.
The student used a laser and a protractor to measure a variety of angles of incidence and
refraction through a semi-circular glass prism. The design of the experiment and the student's
results are shown below.
Angle of
Incidence (°)
Angle of
Refraction (º)
20
11
30
19
40
26
50
31
60
36
70
38
2a) By hand (i.e., without using computer software), create a linear graph on graph paper
using the student's data. Note: You will have to manipulate the data in order to achieve a
linear function.
2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your
answer to the nearest hundredth.
Use the following information to answer the next two questions.
A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in
the diagram.
3a) Determine the critical angle of zircon.
35.0°
70°
55
55°
3b) Determine the angle of refraction when the laser beam leaves the prism.
Chapter 5 Solutions
University Physics with Modern Physics (14th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.