Your forehead can withstand a force of about 6.0 kN before fracturing, while your cheekbone can only withstand about 1.3 kN.
a. If a 140 g baseball strikes your head at 30 m/s and stops in 0.0015 s, what is the magnitude of the ball’s acceleration?
b. What is the magnitude of the force that stops the baseball?
c. What force does the baseball apply to your head? Explain.
d. Are you in danger of a fracture if the ball hits you in the forehead? In the cheek?
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
College Physics: A Strategic Approach (3rd Edition)
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Anatomy & Physiology (6th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Applications and Investigations in Earth Science (9th Edition)
Cosmic Perspective Fundamentals
Biology: Life on Earth with Physiology (11th Edition)
- Consider dropping a baseball from rest at an altitude of 300 m. Assume that the baseball has a drag coefficient of 0.3, a mass of 0.145 kg, and a radius of 3.7 cm. a. What is the terminal speed vT of this baseball? b. Calculate the characteristic time tT = vT / |g|. c. Set up the Newton application to model this situation. Let's agree that the ball has essentially reached its terminal velocity when its acceleration falls below |g| / 20. About how long must the baseball fall to reach terminal velocity according to this criterion? Express your answer as a multiple of the characteristic time tT. (Hints: Equation N9.17 might be helpful as you set up the program. A time step of 0.1 seconds works pretty well.) Equation N9.17: az = -|g| * (1 - (vz2 / vT2))arrow_forward2. a. Define displacement r, velocity v and acceleration a b. Use these parameters to derive a kinematic equation that expresses the final velocity vi of an object as a function of nitial velocity Vo, displacement r and position dependent acceleration a(r). C.Suppose the position dependent acceleration a(r) is given in Figure 2. Find the final velocity of the object d. Consider a sun bound asteroid of mass Ma. The mass of the sun, M,>>Ma. The asteroid is heading directly towards the sun. The attractive gravitational force Fs between the sun and the asteroid is: Fo IGM,M/r1l-r). The initial position of the asteroid is ro and its final position is r before reaching the sun. Express the final velocity of the asteroid as a function of ro, Vo, ri, and the known constants G and M 6 4. 2. 2arrow_forwardC. a. 1. Alan (m = 50 kg) and Diego (m = 40 kg) are standing on a frictionless ice rink, facing each other, when Alan pushes Diego. Diego moves with an acceleration of 1 m/s². What is the magnitude of Alan's acceleration? a. .8 m/s² b. 1.0 m/s² c. 1.25 m/s² d. Cannot be determined 2. How much horizontal force must a girl apply to a 50 kg cabinet to accelerate it at .4 m/s² along a horizontal surface if there is a friction force of 70 N? b. 50 N e. 90 N 3. Students design an experiment to determine the relationship between mass and acceleration where a cannon fires varying masses. Motion sensors are used to measure the velocity of the cannon ball while it is in the cannon. A graph of one of the trials is shown to the right. The mass is then increased for the next trial while keeping everything else the same. What should the velocity vs. time graph look like for this next trial? The second trial is the dashed line. 120 100 80 60 40 20 0 0 120 100 80 60 40 20 a. 20 N d. 80 N D Velocity…arrow_forward
- A 2.5 x 103 kilogram truck with rubber tires moves through a 120 meter radius turn on a dry asphalt surface. a. Determine the force of friction acting on the truck’s tires during the turn. Calculate the maximum speed with which the truck could have made this turn. Explain how driving across a patch of ice during the turn would reduce the truck’s ability to safely complete the turn.arrow_forwardThe drag on a pitched baseball can be surprisingly large. Suppose a 145 g baseball with a diameter of 7.4 cm has an initial speed of 40.2 m/s (90 mph).a. What is the magnitude of the ball’s acceleration due to the drag force?b. If the ball had this same acceleration during its entire 18.4 m trajectory, what would its final speed be?arrow_forwardAn astronaut weighing 236 lbs on Earth is on a mission to the Moon and Mars. a.What would he weigh in newtons when he is on the Moon? The acceleration due to gravity on the Moon is one-sixth that on Earth? b. How much would he weigh in newtons when he is on Mars, where the acceleration due to gravity is 0.38 times that on Earth? c. What is his mass in kilograms on Earth?arrow_forward
- A 12.1-kg box starting at rest on a horizontal floor is acted on by a net horizontal force of 6.05 N. a. What is the magnitude of the box's acceleration? b. How far does it travel in 10.0 seconds? c. What is its speed at that time?arrow_forwardTwo children fight over a 200 g stuffed bear. The 25 kg boy pulls to the right with a 15 N force and the 20 kg girl pulls to the left with a 17 N force. Ignore all other forces on the bear (such as its weight). a. At this instant, can you say what the velocity of the bear is? If so, what are the magnitude and direction of the velocity? b. At this instant, can you say what the acceleration of the bear is? If so, what are the magnitude and direction of the acceleration?arrow_forward2. You pull with a force of 255 N on a rope that is attached to a block of mass 30 kg, and the block slides across the floor at a constant speed of 1.1 m/s. The rope makes an angle of 0 = 40° with the horizontal. Both the force and the velocity of the block are in the xy plane. The block moves only along the direction parallel to the floor. See the figure for a diagram of this situation. a. What is the net force on the block? Explain your b. c. reasoning. Is there friction between the block and the floor? How do you know? Rope 40° 15₂ Draw a Free Body Diagram for the block. Find the magnitude and direction of each force, and express them as vectors.arrow_forward
- The surface of a pool table is h=0.710 m from the floor. The winner of a competition wants to know if he has broken the world speed record for the break shot of 32 mph (about 14.3 m/s). A. If the winner’s ball landed d=4.95 m from the table’s edge, calculate the speed of his break shot v0. Assume friction is negligible. B. At what speed v1 did his pool ball hit the ground? Image is attached below. Please show all work.arrow_forwardA crate with mass 33.5 kg initially at rest on a warehouse floor is acted on by a net horizontal force of 16.0 N. a. What is the magnitude of acceleration? b. How far does the crate travel in 13.0 s? c. What is its speed at the end of 13.0 s?arrow_forwardA rope is used to pull a 2.89-kg bucket of water out of a deep well. a. What is the acceleration of the bucket when the tension in the rope is 30.2 N?b. If starting from rest, what speed will the bucket have after experiencing this force for 2.16 seconds?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning