Numerical Methods for Engineers
Numerical Methods for Engineers
7th Edition
ISBN: 9780073397924
Author: Steven C. Chapra Dr., Raymond P. Canale
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 4P

Determine the roots of f ( x ) = 12 21 x + 18 x 2 2.75 x 3 graphically. In addition, determine the first root of the function with (b) bisection, and (c) false position. For (b) and (c) use initial guesses of x l = 1 and  x u = 0 , and a stopping criterion of 1%.

(a)

Expert Solution
Check Mark
To determine

To calculate: The real roots of the equation f(x)=2.75x3+18x221x12 using the graphical method.

Answer to Problem 4P

Solution: Graphically, the real roots of the equation are approximated as 0.4, 2.2, and 4.8.

Explanation of Solution

Given Information: The equation f(x)=25+82x90x2+44x38x4+0.7x5.

Formula used: The roots of an equation can be represented graphically by the x-coordinate of the point where the graph intercepts the x-axis.

Calculation:

Use the following MATLAB code to plot the function f(x) with respect to independent variable x as,

% (a)

clear;clc;

% define the vector x

x = linspace(-1,5);

% define the function f(x)

y1 = -2.75*x.^3+18*x.^2-21*x-12;

y2 = 0;

% plot f(x)

plot(x, y1);

xlabel('x')

ylabel('f(x)')

grid on

hold on

line([-1,5],[y2, y2])

Execute the above code to obtain the plot as,

Numerical Methods for Engineers, Chapter 5, Problem 4P

From the plot, the zeros of the equation are approximated as 0.4, 2.2 and 4.8.

(b)

Expert Solution
Check Mark
To determine

To calculate: The root of the equation f(x)=2.75x3+18x221x12 using the bisection method with xl and xu as 1 and 0, respectively, and with the stopping criteria being the iteration where εa falls below 1%.

Answer to Problem 4P

Solution: The root of the equation is approximated as 0.41797.

Explanation of Solution

Given Information: The function equation is f(x)=2.75x3+18x221x12.

Initial guesses are,

xl=1xu=0

Formula used: A root of an equation can be obtained using the bisection method as follows:

1. Choose two values of x, say a and b such that f(a)f(b)<0.

2. Estimate the root by x1=a+b2.

3. If, f(a)f(x1)<0, the root would lie between a and x1. Next, assume the next root to be x2=a+x12. If, f(a)f(x1)>0, the root would lie between b and x1. Now assume the next root to be x2=b+x12, and if f(a)f(x1)=0, the root is x1.

Calculation:

For the function f(x):

f(1)=2.75(1)3+18(1)221(1)12=29.75f(0)=2.75(0)3+18(0)221(0)12=12

Thus,

f(1)f(0)<0

Calculate the first root to be,

x1=1+02=0.5

Further,

f(0.5)=2.75(0.5)3+18(0.5)221(0.5)12=3.34375

Thus, f(0.5)f(0)<0. This implies that the root lies between 0.5 and 0.

Calculate the second root to be:

x2=0.5+02=0.25

The approximate error is computed as:

εa=(|0.25(0.5)0.25|×100)%=100%

Therefore, the approximate relative percentage error is 100%.

Furthermore,

f(0.25)=2.75(0.25)3+18(0.25)221(0.25)12=5.58203

Thus, f(0.5)f(0.25)<0. This implies that the root lies between 0.5 and 0.25.

Calculate the third root to be:

x3=0.5+(0.25)2=0.375

The approximate error is computed as:

εa=(|0.375(0.25)0.375|×100)%=33.3%

The approximate error is 33.3%.

Further,

f(0.375)=2.75(0.375)3+18(0.375)221(0.375)12=1.44873

Thus, f(0.5)f(0.375)<0. This implies that the root lies between 0.5 and 0.375.

Calculate the fourth root to be:

x4=0.5+(0.375)2=0.4375

The approximate error is computed as:

εa=(|0.4375(0.375)0.4375|×100)%=14.28%

The approximate error is 14.28%.

Thus,

f(0.4375)=2.75(0.4375)3+18(0.4375)221(0.4375)12=0.8631

Therefore, f(0.4375)f(0.375)<0. This implies that the root lies between 0.4375 and 0.375.

Calculate the fifth root to be:

x5=0.4375+(0.375)2=0.40625

The approximate error is computed as:

εa=(|0.40625(0.4375)0.40625|×100)%=7.69%

The approximate error is 7.69%.

Thus,

f(0.40625)=2.75(0.40625)3+18(0.40625)221(0.40625)12=0.31367

Therefore, f(0.4375)f(0.40625)<0. This implies that the root lies between 0.4375 and 0.40625.

Calculate the sixth root to be:

x6=0.4375+(0.40625)2=0.42188

The approximate error is computed as:

εa=(|0.42188(0.40625)0.42188|×100)%=3.7%

The approximate error is 3.7%.

Thus,

f(0.42188)=2.75(0.42188)3+18(0.42188)221(0.42188)12=0.26947

Therefore, f(0.42188)f(0.40625)<0. This implies that the root lies between 0.42188 and 0.40625.

Calculate the seventh root to be:

x7=0.42188+(0.40625)2=0.41406

The approximate error is computed as:

εa=(|0.41406(0.42188)0.41406|×100)%=1.89%

The approximate error is 1.89%.

Further,

f(0.41406)=2.75(0.41406)3+18(0.41406)221(0.41406)12=0.02341

Thus, f(0.42188)f(0.41406)<0. This implies that the root lies between 0.42188 and 0.41406.

Calculate the eighth root to be:

x8=0.42188+(0.41406)2=0.41797

The approximate error is computed as:

εa=(|0.41797(0.41406)0.41797|×100)%=0.93%

The approximate error is 0.93%.

As, εa is less than 1%, the process is stopped and root can be approximated as 0.41797.

(c)

Expert Solution
Check Mark
To determine

To calculate: The root of the equation f(x)=2.75x3+18x221x12 using the false-position method with xl and xu as 1 and 0, respectively, and with the stopping criteria being the iteration where εa falls below 1%.

Answer to Problem 4P

Solution: The root of the equation can be approximated as 0.41402.

Explanation of Solution

Given Information: The equation f(x)=2.75x3+18x221x12.

Initial guesses are,

xl=1xu=0

Formula used: A root of an equation can be obtained using the false-position method as follows:

1. Choose two values of x, say a and b such that f(a)f(b)<0.

2. Estimate the root by x1=bf(b)(ab)f(a)f(b).

3. If, f(a)f(x1)<0, the root would lie between a and x1. Next, assume the next root to be x2=x1f(x1)(ax1)f(a)f(x1). If, f(a)f(x1)>0, the root would lie between x1 and b. Now assume the next root to be x2=bf(b)(x1b)f(xi)f(b), and if f(a)f(x1)=0, the root is x1.

Calculation:

For the function f(x):

f(1)=2.75(1)3+18(1)221(1)12=29.75f(0)=2.75(0)3+18(0)221(0)12=12

Thus,

f(1)f(0)<0

Calculate the first root to be,

x1=1(29.75)(10)29.75(12)=0.28743

Now,

f(0.28743)=2.75(0.28743)3+18(0.28743)221(0.28743)12=4.41173

Thus, f(1)f(0.28743)<0. This implies that the root lies between 1 and 0.28743.

Calculate the second root to be:

x2=1(29.75)(1(0.28743))29.75(4.41173)=0.37945

The approximate error is computed as:

εa=(|0.37945(0.28743)0.58802|×100)%=24.25%

The approximate relative percentage error is 24.25%.

Further,

f(0.37945)=2.75(0.37945)3+18(0.37945)221(0.37945)12=1.28966

Thus, f(1)f(0.37945)<0. This implies that the root lies between 1 and 0.37945.

Calculate the third root to be:

x3=1(29.75)(1(0.37945))29.75(1.28966)=0.40523

The approximate error is computed as:

εa=(|0.40523(0.37945)0.40523|×100)%=6.36%

The approximate error is 6.36%.

Now,

f(0.40523)=2.75(0.40523)3+18(0.40523)221(0.40523)12=0.35129

Thus, f(1)f(0.40529)<0. This implies that the root lies between 1 and 0.40529.

Calculate the fourth root to be:

x4=1(29.75)(1(0.40529))29.75(0.35129)=0.41217

The approximate error is computed as:

εa=(|0.41217(0.40529)0.41217|×100)%=1.68%

The approximate error is 1.68%.

Now,

f(0.41217)=2.75(0.41217)3+18(0.41217)221(0.41217)12=0.09384

Thus, f(1)f(0.41217)<0. This implies that the root lies between 1 and 0.41217.

Calculate the fifth root would be:

x5=1(29.75)(1(0.41217))29.75(0.09384)=0.41402

The approximate error is computed as:

εa=(|0.41402(0.41217)0.41217|×100)%=0.45%

The approximate error is 0.45%.

As, εa is less than 1%, the process is stopped and root can be approximated as 0.41402.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
3 kN 3 kN 1.8 kN/m 80 mm B 300 mm D an 1.5 m-1.5 m--1.5 m- PROBLEM 5.47 Using the method of Sec. 5.2, solve Prob. 5.16 PROBLEM 5.16 For the beam and loading shown, determine the maximum normal stress due to bending on a transverse section at C.
300 mm 3 kN 3 kN 450 N-m D E 200 mm 300 mm PROBLEM 5.12 Draw the shear and bending-moment diagrams for the beam and loading shown, and determine the maximum absolute value (a) of the shear, (b) of the bending moment.
CORRECT AND DETAILED SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. I REALLY NEED FBD. The cantilevered spandrel beam shown whose depth tapers from d1 to d2, has a constant width of 120mm. It carries a triangularly distributed end reaction.Given: d1 = 600 mm, d2 = 120 mm, L = 1 m, w = 100 kN/m1. Calculate the maximum flexural stress at the support, in kN-m.2. Determine the distance (m), from the free end, of the section with maximum flexural stress.3. Determine the maximum flexural stress in the beam, in MPa.ANSWERS: (1) 4.630 MPa; (2) 905.8688 m; (3) 4.65 MPa

Chapter 5 Solutions

Numerical Methods for Engineers

Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Series; Author: Professor Dave Explains;https://www.youtube.com/watch?v=OxVBT83x8oc;License: Standard YouTube License, CC-BY
Power Series & Intervals of Convergence; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=XHoRBh4hQNU;License: Standard YouTube License, CC-BY