Numerical Methods for Engineers
Numerical Methods for Engineers
7th Edition
ISBN: 9780073397924
Author: Steven C. Chapra Dr., Raymond P. Canale
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
100%
Book Icon
Chapter 5, Problem 1P

Determine the real roots of f ( x ) = 0.5 x 2 + 2.5 x + 4.5 :

(a) Graphically.

(b) Using the quadratic formula.

(c) Using three iterations of the bisection method to determine the highest root. Employ initial guesses of x l = 5  and x u = 10 .

Compute the estimated error ε a and the true error ε t after each iteration.

(a)

Expert Solution
Check Mark
To determine

The real roots of the equation f(x)=0.5x2+2.5x+4.5 using the graphical method.

Answer to Problem 1P

Solution:

The real roots of the equation are 1.4 and 6.4.

Explanation of Solution

Given Information:

The equation f(x)=0.5x2+2.5x+4.5.

Calculation:

The graph of the function can be plotted using MATLAB.

Code:

clc;

x=linspace(-2,8);

y1=-0.5*x.^2+2.5*x+4.5;

y2=0;

plot(x,y1);

hold on

line([-2,8],[y2,y2])

Output:

This gives the following plot:

Numerical Methods for Engineers, Chapter 5, Problem 1P

The roots of an equation can be represented graphically by the x-coordinate of the point where the graph cuts the x-axis. From the plot, the two zeros of the equation can be approximated as 1.4 and 6.4.

(b)

Expert Solution
Check Mark
To determine

To calculate: The real roots of the equation f(x)=0.5x2+2.5x+4.5 using the quadratic formula.

Answer to Problem 1P

Solution:

The roots of the equation are 1.40512484 and 6.40512484.

Explanation of Solution

Given Information:

The equation f(x)=0.5x2+2.5x+4.5.

Formula Used:

The roots of an equation ax2+bx+c can be obtained using the quadratic formula as:

x=b±b24ac2a

Calculation:

Consider the provided equation,

f(x)=0.5x2+2.5x+4.5

Now substitute 0.5 for a, 2.5 for b and 4.5 for c in the quadratic formula to get the roots as:

x=2.5±2.524(0.5)(4.5)2(0.5)=2.5±3.905124841=1.40512484,6.40512484

Thus, the roots of the equation are 1.40512484 and 6.40512484.

(c)

Expert Solution
Check Mark
To determine

To calculate: The highest root of the equation f(x)=0.5x2+2.5x+4.5 using three iterations of the bisection method by assuming xl and xu to be 5 and 10 respectively while computing the true and estimated errors after each iteration.

Answer to Problem 1P

Solution:

The highest root of the equation can be approximated as 6.875. The true and approximate errors are as follows:

nεaεt117.1%220%2.42%39.09%7.32%

Explanation of Solution

Given Information:

The equation f(x)=0.5x2+2.5x+4.5.

Formula Used:

A root of an equation can be obtained using the bisection method as follows:

1. Choose 2 values x, say a and b such that f(a)f(b)<0.

2. Now, estimate the root by x1=a+b2.

3. If, f(a)f(x1)<0, the root would lie between a and x1. Now assume the next root to be x2=a+x12. If, f(a)f(x1)>0, the root would lie between b and x1. Now assume the next root to be x2=b+x12 and if f(a)f(x1)=0, the root is x1.

Calculation:

For the provided function:

f(5)=0.5(5)2+2.5(5)+4.5=4.5f(10)=0.5(10)2+2.5(10)+4.5=20.5

Hence,

f(5)f(10)<0

Now take the first root to be,

x1=5+102=7.5

As, the true root computed from part (b) was 6.40512484. Now, the true relative percentage error would be:

εt=(|6.405124847.56.40512484|×100)%=17.1%

The true error is 17.1%. There would be no approximate error for the first iteration.

Now,

f(7.5)=0.5(7.5)2+2.5(7.5)+4.5=4.875

Thus, f(5)f(7.5)<0. This implies that the root would be between 5 and 7.5.

Now, the second root would be:

x2=5+7.52=6.25

As, the true root computed from part (b) was 6.40512484. Now, the true relative percentage error would be:

εt=(|6.405124846.256.40512484|×100)%=2.42%

The true error is 2.42%.

The approximate error can be computed as:

εa=(|6.257.56.25|×100)%=20%

The approximate error is 2%.

Now,

f(6.5)=0.5(6.5)2+2.5(6.5)+4.5=0.59375

Thus, f(5)f(6.25)>0. This implies that the root would be between 6.25 and 7.5.

Now, the third root would be:

x3=6.25+7.52=6.875

As, the true root computed from part (b) was 6.40512484. Now, the true relative percentage error would be:

εt=(|6.405124846.8756.40512484|×100)%=7.34%

The true error is 7.34%.

The approximate error can be computed as:

εa=(|6.8756.256.875|×100)%=9.09%

The approximate error is 9.09%.

Thus, the highest root can be approximated as 6.875.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Can you explain how the error term in the CF Algorithm relates to the (m+1)th complete quotient? Also, what would be a good way to explain the connection between these two slides? How can one transition between them for a presentation?
How can I explain the pi example in a presentation? I'm having trouble transitioning between these two slides
McGilla Golf has decided to sell a new line of golf clubs. The clubs will sell for $895 per set and have a variable cost of $431 per set. The company has spent $200,000 for a marketing study that determined the company will sell 80,000 sets per year for seven years. The marketing study also determined that the company will lose sales of 8,600 sets per year of its high-priced clubs. The high-priced clubs sell at $1,325 and have variable costs of $645. The company will also increase sales of its cheap clubs by 10,800 sets per year. The cheap clubs sell for $340 and have variable costs of $141 per set. The fixed costs each year will be $14,350,000. The company has also spent $1,500,000 on research and development for the new clubs. The plant and equipment required will cost $43,700,000 and will be depreciated on a straight-line basis. The new clubs will also require an increase in net working capital of $3,625,000 that will be returned at the end of the project. The tax rate is 25…

Chapter 5 Solutions

Numerical Methods for Engineers

Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
College Algebra
Algebra
ISBN:9781938168383
Author:Jay Abramson
Publisher:OpenStax
Text book image
College Algebra
Algebra
ISBN:9781337282291
Author:Ron Larson
Publisher:Cengage Learning
Implicit Differentiation with Transcendental Functions; Author: Mathispower4u;https://www.youtube.com/watch?v=16WoO59R88w;License: Standard YouTube License, CC-BY
How to determine the difference between an algebraic and transcendental expression; Author: Study Force;https://www.youtube.com/watch?v=xRht10w7ZOE;License: Standard YouTube License, CC-BY