
Concept explainers
Determine the real root of
(a) Graphically.
(b) Using bisection to determine the root to
(c) Perform the same computation as in (b) but use the false-position method and
(a)

The real roots of the equation
Answer to Problem 3P
Solution:
The approximate real root of the equation is 0.6.
Explanation of Solution
Given Information:
The equation
Calculation:
The graph of the function can be plotted using MATLAB.
Code:
Output:
This gives the following plot:
The roots of an equation can be represented graphically by the x-coordinate of the point where the graph cuts the x-axis. From the plot, the only zeros of the equation can be approximated as 0.6.
(b)
To calculate: The root of the equation
Solution:
The root of the equation can be approximated as 0.59375.
Given Information:
The equation
Formula Used:
A root of an equation can be obtained using the bisection method as follows:
1. Choose 2 values x, say a andb such that
2. Now, estimate the root by
3. If,
Calculation:
For the provided function:
Hence,
Now take the first root to be,
Now,
Thus,
Now, the second root would be:
The approximate error can be computed as:
The approximate relative percentage error is 200%.
Now,
Thus,
Now, the third root would be:
The approximate error can be computed as:
The approximate error is 11.1%.
Now,
Thus,
Now, the fourth root would be:
The approximate error can be computed as:
The approximate error is 5.26%.
As
(c)
To calculate: The root of the equation
Solution:
The root of the equation can be approximated as 0.57956.
Given Information:
The equation
Formula Used:
A root of an equation can be obtained using the false-position method as follows:
1. Choose 2 values x, say a andb such that
2. Now, estimate the root by
3. If,
Calculation:
For the provided function:
Hence,
Now take the first root to be,
Now,
Thus,
Now, the second root would be:
The approximate error can be computed as:
The approximate relative percentage error is 200%.
Now,
Thus,
Now, the third root would be:
The approximate error can be computed as:
The approximate error is 1.29%.
Now,
Thus,
Now, the fourth root would be:
The approximate error can be computed as:
The approximate error is 0.17%.
As
(b)

To calculate: The root of the equation
Answer to Problem 3P
Solution:
The root of the equation can be approximated as 0.59375.
Explanation of Solution
Given Information:
The equation
Formula Used:
A root of an equation can be obtained using the bisection method as follows:
1. Choose 2 values x, say a andb such that
2. Now, estimate the root by
3. If,
Calculation:
For the provided function:
Hence,
Now take the first root to be,
Now,
Thus,
Now, the second root would be:
The approximate error can be computed as:
The approximate relative percentage error is 200%.
Now,
Thus,
Now, the third root would be:
The approximate error can be computed as:
The approximate error is 11.1%.
Now,
Thus,
Now, the fourth root would be:
The approximate error can be computed as:
The approximate error is 5.26%.
As
(c)
To calculate: The root of the equation
Solution:
The root of the equation can be approximated as 0.57956.
Given Information:
The equation
Formula Used:
A root of an equation can be obtained using the false-position method as follows:
1. Choose 2 values x, say a andb such that
2. Now, estimate the root by
3. If,
Calculation:
For the provided function:
Hence,
Now take the first root to be,
Now,
Thus,
Now, the second root would be:
The approximate error can be computed as:
The approximate relative percentage error is 200%.
Now,
Thus,
Now, the third root would be:
The approximate error can be computed as:
The approximate error is 1.29%.
Now,
Thus,
Now, the fourth root would be:
The approximate error can be computed as:
The approximate error is 0.17%.
As
(c)

To calculate: The root of the equation
Answer to Problem 3P
Solution:
The root of the equation can be approximated as 0.57956.
Explanation of Solution
Given Information:
The equation
Formula Used:
A root of an equation can be obtained using the false-position method as follows:
1. Choose 2 values x, say a andb such that
2. Now, estimate the root by
3. If,
Calculation:
For the provided function:
Hence,
Now take the first root to be,
Now,
Thus,
Now, the second root would be:
The approximate error can be computed as:
The approximate relative percentage error is 200%.
Now,
Thus,
Now, the third root would be:
The approximate error can be computed as:
The approximate error is 1.29%.
Now,
Thus,
Now, the fourth root would be:
The approximate error can be computed as:
The approximate error is 0.17%.
As
Want to see more full solutions like this?
Chapter 5 Solutions
Numerical Methods for Engineers
Additional Math Textbook Solutions
Pathways To Math Literacy (looseleaf)
Probability And Statistical Inference (10th Edition)
APPLIED STAT.IN BUS.+ECONOMICS
Elementary Statistics: A Step By Step Approach
- 2. Figure below shows a U-tube manometer open at both ends and containing a column of liquid mercury of length l and specific weight y. Considering a small displacement x of the manometer meniscus from its equilibrium position (or datum), determine the equivalent spring constant associated with the restoring force. Datum Area, Aarrow_forward1. The consequences of a head-on collision of two automobiles can be studied by considering the impact of the automobile on a barrier, as shown in figure below. Construct a mathematical model (i.e., draw the diagram) by considering the masses of the automobile body, engine, transmission, and suspension and the elasticity of the bumpers, radiator, sheet metal body, driveline, and engine mounts.arrow_forward3.) 15.40 – Collar B moves up at constant velocity vB = 1.5 m/s. Rod AB has length = 1.2 m. The incline is at angle = 25°. Compute an expression for the angular velocity of rod AB, ė and the velocity of end A of the rod (✓✓) as a function of v₂,1,0,0. Then compute numerical answers for ȧ & y_ with 0 = 50°.arrow_forward
- 2.) 15.12 The assembly shown consists of the straight rod ABC which passes through and is welded to the grectangular plate DEFH. The assembly rotates about the axis AC with a constant angular velocity of 9 rad/s. Knowing that the motion when viewed from C is counterclockwise, determine the velocity and acceleration of corner F.arrow_forward500 Q3: The attachment shown in Fig.3 is made of 1040 HR. The static force is 30 kN. Specify the weldment (give the pattern, electrode number, type of weld, length of weld, and leg size). Fig. 3 All dimension in mm 30 kN 100 (10 Marks)arrow_forward(read image) (answer given)arrow_forward
- A cylinder and a disk are used as pulleys, as shown in the figure. Using the data given in the figure, if a body of mass m = 3 kg is released from rest after falling a height h 1.5 m, find: a) The velocity of the body. b) The angular velocity of the disk. c) The number of revolutions the cylinder has made. T₁ F Rd = 0.2 m md = 2 kg T T₂1 Rc = 0.4 m mc = 5 kg ☐ m = 3 kgarrow_forward(read image) (answer given)arrow_forward11-5. Compute all the dimensional changes for the steel bar when subjected to the loads shown. The proportional limit of the steel is 230 MPa. 265 kN 100 mm 600 kN 25 mm thickness X Z 600 kN 450 mm E=207×103 MPa; μ= 0.25 265 kNarrow_forward
- T₁ F Rd = 0.2 m md = 2 kg T₂ Tz1 Rc = 0.4 m mc = 5 kg m = 3 kgarrow_forward2. Find a basis of solutions by the Frobenius method. Try to identify the series as expansions of known functions. (x + 2)²y" + (x + 2)y' - y = 0 ; Hint: Let: z = x+2arrow_forward1. Find a power series solution in powers of x. y" - y' + x²y = 0arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





