In Example 5.7, we pushed on two blocks on a table. Suppose three blocks are in contact with one another on a frictionless, horizontal surface as shown in Figure P5.43. A horizontal force
Trending nowThis is a popular solution!
Chapter 5 Solutions
Physics for Scientists and Engineers, Volume 2
- An object of mass m = 1.00 kg is observed to have an acceleration a with a magnitude of 10.0 m/s2 in a direction 60.0 east of north. Figure P4.29 shows a view of the object from above. The force F2 acting on the object has a magnitude of 5.00 N and is directed north. Determine the magnitude and direction of the one other horizontal force F1 acting on the object. Figure P4.29arrow_forward(a) Find an equation to determine the magnitude of the net force required to stop a car of mass m, given that the initial speed of the car is v0 and the stopping distance is x . (b) Find the magnitude of the net force if the mass of the car is 1050 kg, the initial speed is 40.0 km/h, and the stopping distance is 25.0 m.arrow_forwardGive reasons for the answers to each of the following questions: (a) Clan a normal force be horizontal? (b) Can a normal force be directed vertically downward? (c) Consider a tennis ball in contact with a stationary floor and with nothing else. Can the normal force be different in magnitude from the gravitational force exerted on the ball? (d) Can the force exerted by the floor on the hall be different in magnitude from the force the ball exerts on the floor?arrow_forward
- A 3.0-kg block sits on top of a 5.0-kg block which is on a horizontal surface. The 5.0-kg block is pulled to the right with a force F⃗ as shown in the figure . The coefficient of static friction between all surfaces is 0.56 and the kinetic coefficient is 0.39.What is the minimum value of F needed to move the two blocks? If the force is 10% greater than your answer for (a), what is the acceleration of each block?arrow_forwardPlease answer this, I need help.arrow_forwardSuppose you are at a bowling alley, where a machine uses a constant force and pushes balls up a ramp one meter in length. The balls are sliding -- not rolling -- along the incline, and they end up half a meter above the base of the ramp. Ignore friction. Approximately how much force does the machine put on a 5 kg bowling ball? 1.0 m H 0.5 m 200 N 50 N 25 N O 5N Impossible to determinearrow_forward
- Consider the figure shown in the following figure. You are lowering two boxes, one on top of the other, down a ramp by pulling on a rope parallel to the surface of the ramp. Both blocks move with constant velocity of 10.0 [m/s]. The coefficient of kinetic friction between the ramp and the lower box is 0.555 and the coefficient of static friction between the two boxes is 0.750.1. Write Newton's 2nd law of motion along the x and y directions for both blocks considering their state of motion.2. What are the magnitude and direction of the firctional force on the upper box?3. Draw the free-body diagram of both blocks. Set the x-axis parallel to the ramp.arrow_forwardYou are trying to slide a heavy trunk across a horizontal floor. The mass of the trunk is 85kg, and you need to exert a force of 3.3*10^2 N to make it just begin to move. a)Determine the coefficient of static friction between the floor and the trunk.b)After the trunk starts moving, you continue to push with this force. The trunk reaches a speed of 2.0m/s after 5.0s. Calculate the acceleration of the trunk if the coefficient of kinetic friction between the trunk and the floor is 0.32.arrow_forwardThe 102-kg crate is constantly subjected to the action of the two forces as shown. After the crate slides for a distance of 10 m, it attains a speed of 16438.271 mm/s. Determine the magnitude of the force (N) F if the coefficient of kinetic friction is 0.21. F 813 N 30°arrow_forward
- A 7 kg block is resting on a horizontal tabletop. A 3 kg block is on top of the 7 kg block. An applied force of 12 N is exerted straight downward on the top block. Draw the free-body diagrams on each block and find (a) the magnitude of the normal force on the 3 kg block from the 7 kg block, and (b) the magnitude of the normal force on the 7 kg block from the table.arrow_forwardAnswer parts a, and b of the following question:1. a) A catcher stops a 0.15-kg ball traveling at 40 m/s in a distance of 20 cm. What is the magnitude of the average force that the ball exerts against his glove? b) A 10-kg object is hanging by a very light wire in an elevator that is traveling upward. The tension in the rope is measured to be 75 N. What are the magnitude and direction of the acceleration of the elevator?arrow_forwardA dockworker applies a constant horizontal force of 79.0 N to a block of ice on a smooth horizontal floor. The frictional force is negligible. The block starts from rest and moves a distance 13.0 m in a time 4.50 s. What is the mass of the block of ice? If the worker stops pushing at the end of 4.50 s, how far does the block move in the next 4.70 s?arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning