EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 42QTP
The endurance limit (fatigue life) of steel is approximately one-half the ultimate tensile strength (see Fig. 2.16), but never higher than 100 ksi (700 MPa). For iron, the endurance limit is 40% of the ultimate strength, but never higher than 24 ksi (170 MPa). Plot the endurance limit versus the ultimate strength for the steels described in this chapter and for the cast irons shown in Table 12.3. On the same plot, show the effect of surface finish by plotting the endurance limit, assuming that the material is in the as-cast state. (See Fig. 2.29.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find the toughness (or energy to cause fracture) for a metal that experiences both elastic and plastic deformation. Assume Equation
6.5 for elastic deformation, that the modulus of elasticity is 172 GPa (25 × 106 psi), and that elastic deformation terminates at a strain
of 0.008. For plastic deformation, assume that the relationship between stress and strain is described by Equation 6.19, in which the
values for K and n are 6900 MPa (1 × 106 psi) and 0.25, respectively. Furthermore, plastic deformation occurs between strain values of
0.008 and 0.61, at which point fracture occurs.
J/m³
Draw a Stress/Strain graph of a mild tensile steel and identify the limit of proportionality and the yield point
Parvin bhai
Chapter 5 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 5 - What are the major categories of ferrous alloys?Ch. 5 - Prob. 2RQCh. 5 - List the basic raw materials used in making iron...Ch. 5 - List the types of furnaces commonly used in...Ch. 5 - List and explain the characteristics of the types...Ch. 5 - Prob. 6RQCh. 5 - What is continuous casting? What advantages does...Ch. 5 - What is the role of a tundish in continuous...Ch. 5 - Prob. 9RQCh. 5 - What are trace elements?
Ch. 5 - What are the percentage carbon contents of...Ch. 5 - Prob. 12RQCh. 5 - Prob. 13RQCh. 5 - Prob. 14RQCh. 5 - Prob. 15RQCh. 5 - What is high-speed steel?Ch. 5 - Prob. 17RQCh. 5 - Prob. 18RQCh. 5 - Prob. 19RQCh. 5 - What effect does carbon content have on mechanical...Ch. 5 - Identify several different products that are made...Ch. 5 - Professional cooks generally- prefer carbon-steel...Ch. 5 - Prob. 23QLPCh. 5 - Explain why continuous casting has been such an...Ch. 5 - Describe applications in which you would not want...Ch. 5 - Explain what would happen if the speed of the...Ch. 5 - The cost of mill products of metals increases with...Ch. 5 - Describe your observations regarding the...Ch. 5 - Prob. 29QLPCh. 5 - Prob. 30QLPCh. 5 - In Table 5.9, D2 steel is listed as a more common...Ch. 5 - List the common impurities in steel. Which of...Ch. 5 - Explain the purpose of the oil shown at the top...Ch. 5 - Recent research has identified mold-surface...Ch. 5 - Prob. 35QLPCh. 5 - List and explain the advantages and disadvantages...Ch. 5 - Conduct an Internet search and determine the...Ch. 5 - Refer to the available literature, and estimate...Ch. 5 - Some soft drinks are now available in steel cans...Ch. 5 - Using strength and density data, determine the...Ch. 5 - The endurance limit (fatigue life) of steel is...Ch. 5 - Using the data given in Table 5.4, obtain the...Ch. 5 - Based on the information given in Section 5.5.1,...Ch. 5 - Assume that you are in charge of public relations...Ch. 5 - Assume that you are in competition with the steel...Ch. 5 - In the past, waterfowl hunters used lead shot in...Ch. 5 - Aluminum is being used as a substitute material...Ch. 5 - In the 1940s (the Second World War), the Yamato...Ch. 5 - Search the technical literature, and add more...Ch. 5 - Referring to Fig. 5.4a, note that the mold has...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 10-mm-diameter Brinell hardness indenter produced an indentation of 1.52 mm in diameter in a steel alloy when a load of 500 kg was used. (a) Compute the HB of this material. (b) What will be the diameter of an indentation to yield a hardness of 400 HB when a 500-kg load is used?arrow_forwardThe lower yield point for a certain plain carbon steelbar is found to be 135 MPa, while a second bar of the samecomposition yields at 260 MPa. Metallographic analysisshows that the average grain diameter is 50μm in the firstbar and 8μm in the second bar.a. Predict the grain diameter needed to cause a loweryield point of 205 MPa.b. If the steel could be fabricated to form a stablegrain structure of 500 nm grains, what strengthwould be predicted?c. Why might you expect the upper yield point to bemore alike in the first two bars than the lower yieldpoint?arrow_forwardpart made from AISI 1212 steel undergoes a 20 percent cold-work operation. (a) Obtain the yield strength and ultimate strength before and after the cold-work operation. Determine the percent increase in each strength. (b) Determine the ratios of ultimate strength to yield strength before and after the cold work operation. What does the result indicate about the change of ductility of the part?arrow_forward
- It is known that a brass alloy has a yield strength of 275 MPa, a tensile strength of 380 MPa and a modulus of elasticity of 103 GPa. It is determined that a 12.7 mm diameter and 250 mm long cylindrical sample made of this alloy is elongated by 7.6 mm under the tensile stress effect. Based on this information, is it possible to calculate the magnitude of the load required to generate the said elongation? If possible, calculate, if not, explain why.arrow_forwardI need the answer quicklyarrow_forwardFigure 6.22 shows the tensile engineering stress– strain behavior for a steel alloy. (a) What is the modulus of elasticity? (b) What is the proportional limit? (c) What is the yield strength at a strain offset of 0.002? (d) What is the tensile strength?arrow_forward
- Tensile and fully reversed loading fatigue tests were conducted for a certain steel alloy and revealed the tensile strength and endurance limit to be 1200 and 550 MPa, respectively. If a rod of this material supply were subjected to a static stress of 600 MPa and oscillating stresses whose total range was 700 MPa, would you expect the rod to fail by fatigue processes? Hint: You may want to plot a diagram to aid in presenting your answer.arrow_forward5. (i) A 10-mm-diameter Brinell hardness indenter produced an indentation 2.50 mm in diameter in a steel alloy when a load of 1000 kg was used. Compute the HB of this material. (ii) What will be the diameter of an indentation to yield a hardness of 300 HB when a 500-kg load is used?arrow_forwardI need the answer as soon as possiblearrow_forward
- A non-cold-worked cylindrical rod with an initial length of 800 mm and diameter of 15 mm is to be deformed using a tensile load of 45 kN. Of the materials listed below, which are possible candidates if you assume that failure of the system occurs when the rod plastically deforms? Do the possible candidates change if you change your assumption to the system failing at the onset of necking in the rod? Justify your choice(s). Material Young’s Modulus (GPa) Yield Strength (MPa) 1040 Steel UTS (MPa) Elongation (%) 680 205 440 25 Brass 100 185 310 68 Сopper 125 160 220 44arrow_forwardDraw two schematic graphs using pencil showing a typical stress-strain curve for aluminum. The first graph should show engineering stress vs engineering strain, and the second graph should show true stress vs true strain. Label the showing: (i) elastic modulus (ii) proportional limit (iii) yield stress (iv)yield strain (v) fracture stress (vi) fracture strain on each graph. You may showboth graphs on one plot. Explain the difference between engineering stress and true stress.arrow_forward1. Determine working stresses for the two alloys that have the stress–strain behaviors shown in Figures 6.22.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY