
Concept explainers
What is each compound’s systematic name?
(a)

Interpretation:
Systematic name of the given compound should be determined.
Concept introduction:
- IUPAC name consists of three parts in major namely Prefix suffix and root word.
- Prefix represents the substituent present in the molecule and its position in the root name.
- Suffix denotes the presence of functional group if any in the molecule. It can be an alkene, alkyne, alcohol, carboxylic acid, alcohol etc.
- For alkenes, suffix will be ‘ene’.
- Root word represents the longest continuous carbon skeleton of the organic molecule.
- When a molecule consists of cyclic structure, the root word of the molecule is prefixed with cyclo, if it is two cyclic structure combined then prefixed with bicyclo.
Answer to Problem 39P
Systematic name for given molecule is
Explanation of Solution
The structure of given compound is,
This reveals that the molecule contains a nine carbon chain with a double bond on the fourth carbon atom and two bromo groups on the third and eighth carbon atom respectively.
Therefore,
According with the IUPAC conventions the systematic name of the compound is,
(b)

Interpretation:
Systematic name of the given compound should be determined.
Concept introduction:
- IUPAC name consists of three parts in major namely Prefix suffix and root word.
- Prefix represents the substituent present in the molecule and its position in the root name.
- Suffix denotes the presence of functional group if any in the molecule. It can be an alkene, alkyne, alcohol, carboxylic acid, alcohol etc.
- For alkenes, suffix will be ‘ene’.
- Root word represents the longest continuous carbon skeleton of the organic molecule.
- When a molecule consists of cyclic structure, the root word of the molecule is prefixed with cyclo, if it is two cyclic structure combined then prefixed with bicyclo.
- E-Z designators are used as like cis-trans terminology for non-similar groups attached alkenes.
- In E-Z designations, the groups attached to vinylic positions are checked by their priority on the basis of higher molecular weight. If the higher priority groups are on the same sides, then the configuration is designated as Z. If the higher priority groups are on the opposite sides, then the configuration is designated as E.
Answer to Problem 39P
Systematic name of the given compound is
Explanation of Solution
Given,
Compound is,
This reveals that the longest chain in the molecule contains eight carbon atoms with a double bond on third carbon atom and an ethyl group attached on the fourth carbon atom.
Two methyl groups were attached on the third and seventh carbon atom.
Therefore,
The systematic name of the compound is
(c)

Interpretation:
Systematic name of the given compound should be determined.
Concept introduction:
- IUPAC name consists of three parts in major namely Prefix suffix and root word.
- Prefix represents the substituent present in the molecule and its position in the root name.
- Suffix denotes the presence of functional group if any in the molecule. It can be an alkene, alkyne, alcohol, carboxylic acid, alcohol etc.
- For alkenes, suffix will be ‘ene’.
- Root word represents the longest continuous carbon skeleton of the organic molecule.
- When a molecule consists of cyclic structure, the root word of the molecule is prefixed with cyclo, if it is two cyclic structure combined then prefixed with bicyclo.
Answer to Problem 39P
Systematic name of the compound is
Explanation of Solution
Given,
The structure of the compound is,
Structure of the compound reveals that that the given compound contains five membered carbon chain with double bond and on the first and fifth carbon atom methyl groups were attached.
Therefore,
The systematic name of the compound in accordance with IUPAC is,
(d)

Interpretation:
Systematic name of the given compound should be determined.
Concept introduction:
- IUPAC name consists of three parts in major namely Prefix suffix and root word.
- Prefix represents the substituent present in the molecule and its position in the root name.
- Suffix denotes the presence of functional group if any in the molecule. It can be an alkene, alkyne, alcohol, carboxylic acid, alcohol etc.
- For alkenes, suffix will be ‘ene’.
- Root word represents the longest continuous carbon skeleton of the organic molecule.
- When a molecule consists of cyclic structure, the root word of the molecule is prefixed with cyclo, if it is two cyclic structure combined then prefixed with bicyclo.
- E-Z designators are used as like cis-trans terminology for non-similar groups attached alkenes.
- In E-Z designations, the groups attached to vinylic positions are checked by their priority on the basis of higher molecular weight. If the higher priority groups are on the same sides, then the configuration is designated as Z. If the higher priority groups are on the opposite sides, then the configuration is designated as E.
Answer to Problem 39P
Systematic name of the given compound is
Explanation of Solution
Given,
Structure of the compound is,
The structure of the compound reveals the molecule contains seven membered carbon chain with a double bond on the second carbon. On the third and second carbon atoms one ethyl and methyl group were attached.
Therefore the systematic name of the compound is
(e)

Interpretation:
Systematic name of the given compound should be determined.
Concept introduction:
- IUPAC name consists of three parts in major namely Prefix suffix and root word.
- Prefix represents the substituent present in the molecule and its position in the root name.
- Suffix denotes the presence of functional group if any in the molecule. It can be an alkene, alkyne, alcohol, carboxylic acid, alcohol etc.
- For alkenes, suffix will be ‘ene’.
- Root word represents the longest continuous carbon skeleton of the organic molecule.
- When a molecule consists of cyclic structure, the root word of the molecule is prefixed with cyclo, if it is two cyclic structure combined then prefixed with bicyclo.
Answer to Problem 39P
Systematic name of the compound is
Explanation of Solution
Given,
The struicture of the compound is,
Structure of the compound reveals that that the given compound contains six membered carbon chain with double bond and on the fourth carbon atom one methyl group was attached.
Therefore,
The systematic name of the compound in accordance with IUPAC is,
4-methylcyclohexene.
(f)

Interpretation:
Systematic name of the given compound should be determined.
Concept introduction:
- IUPAC name consists of three parts in major namely Prefix suffix and root word.
- Prefix represents the substituent present in the molecule and its position in the root name.
- Suffix denotes the presence of functional group if any in the molecule. It can be an alkene, alkyne, alcohol, carboxylic acid, alcohol etc.
- For alkenes, suffix will be ‘ene’.
- Root word represents the longest continuous carbon skeleton of the organic molecule.
- When a molecule consists of cyclic structure, the root word of the molecule is prefixed with cyclo, if it is two cyclic structure combined then prefixed with bicyclo.
Answer to Problem 39P
Systematic name of the given compound
Explanation of Solution
Given,
The structure of the compound is,
Structure of the compound reveals that that the given compound contains six membered carbon chain with double bond and on the fourth and fifth carbon atoms one ethyl and methyl group was attached respectively.
Therefore,
The systematic name of the compound in accordance with IUPAC’s rules and regulations is,
Want to see more full solutions like this?
Chapter 5 Solutions
Organic Chemistry (8th Edition)
- 4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forwardIII O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward
- 3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forwardWhat is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forward
- Use the reaction coordinate diagram to answer the below questions. Type your answers into the answer box for each question. (Watch your spelling) Energy A B C D Reaction coordinate E A) Is the reaction step going from D to F endothermic or exothermic? A F G B) Does point D represent a reactant, product, intermediate or transition state? A/ C) Which step (step 1 or step 2) is the rate determining step? Aarrow_forward1. Using radii from Resource section 1 (p.901) and Born-Lande equation, calculate the lattice energy for PbS, which crystallizes in the NaCl structure. Then, use the Born-Haber cycle to obtain the value of lattice energy for PbS. You will need the following data following data: AH Pb(g) = 196 kJ/mol; AHƒ PbS = −98 kJ/mol; electron affinities for S(g)→S¯(g) is -201 kJ/mol; S¯(g) (g) is 640kJ/mol. Ionization energies for Pb are listed in Resource section 2, p.903. Remember that enthalpies of formation are calculated beginning with the elements in their standard states (S8 for sulfur). The formation of S2, AHF: S2 (g) = 535 kJ/mol. Compare the two values, and explain the difference. (8 points)arrow_forwardIn the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forward
