Bundle: Chemistry In Focus: A Molecular View Of Our World, 7th + Owlv2 With Mindtap Reader, 1 Term (6 Months) Printed Access Card
7th Edition
ISBN: 9781337812221
Author: Nivaldo J. Tro
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 39E
Interpretation Introduction
Interpretation:
The effect of the structure of ozone on the amount of UV light hitting the earth is to be explained.
Concept Introduction:
Ozone is an atmospheric gas that absorbs UV light and thus, protects life on Earth from excessive UV exposure.
The reaction takes place as follows:
Ozone absorbs UV light and the oxygen-oxygen bond breaks.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
- Draw Lewis structures for each of the following. Give the total number of valence electrons,
select from the lists the number of Regions of Electron Density (REDs) around the central atom,
the molecular shape, and the bond angles.
- Do not put covalent bonds between metals and nonmetals.
- Put brackets around anions to show both charge and quantity.
Shapes
tetrahedral
pyramidal
bent
trigonal planar
linear
diatomic
monatomic ions
Bond Types
nonpolar covalent
polar covalent
nonpolar & polar covalent
ionic
ionic & covalent
Type of molecule
Nonpolar
Polar
Ionic
5. C2Cl2
valence e-1 =
shape=
type of bonds =
type of molecule =
6. AICI3
valence e-1 for one Cl-1 =
shape=
type of bonds =
type of molecule =
7. K3PO3
valence e-1 =
shape=
type of bonds =
type of molecule =
8. KH2PO3
valence e-1 =
shape at the P=
type of bonds =
type of molecule =
dicarbon dichloride
aluminum chloride
potassium phosphite
potassium dihydrogen phosphite
- Draw Lewis structures for each of the following. Give the total number of valence electrons,
select from the lists the number of Regions of Electron Density (REDs) around the central atom,
the molecular shape, and the bond angles.
- Do not put covalent bonds between metals and nonmetals.
- Put brackets around anions to show both charge and quantity.
Shapes
tetrahedral
pyramidal
bent
trigonal planar
linear
diatomic
monatomic ions
Bond Types
nonpolar covalent
polar covalent
nonpolar & polar covalent
ionic
ionic & covalent
Type of molecule
Nonpolar
Polar
lonic
1. HCC13
valence e-1 =
shape=
type of bonds =
type of molecule =
2. SCI2
valence e-1 =
shape=
type of bonds =
type of molecule =
3. P204
valence e-1 =
shape=
type of bonds =
type of molecule =
4. N2O4
valence e-1 =
shape=
type of bonds =
type of molecule =
hydrogen carbon trichloride
sulfur dichloride
diphosphorus tetroxide
dinitrogen tetroxide
10.) The structural formula of a certain aldehyde (related to formaldehyde) is H3C-CH2-CHO. Draw a Lewis structure for this aldehyde and determine the number of bonds present. Note that a single or a double or a triple bond counts as one bond.
Write the number, not the word.
Chapter 5 Solutions
Bundle: Chemistry In Focus: A Molecular View Of Our World, 7th + Owlv2 With Mindtap Reader, 1 Term (6 Months) Printed Access Card
Ch. 5 - Drawing Lewis Structures for Ionic Compounds Draw...Ch. 5 - Using Lewis Structures to Determine the Correct...Ch. 5 - Prob. 5.3YTCh. 5 - Prob. 5.4YTCh. 5 - Drawing Lewis Structures for Covalent Compounds...Ch. 5 - Prob. 5.6YTCh. 5 - Prob. 5.7YTCh. 5 - Prob. 5.8YTCh. 5 - Prob. 5.9YTCh. 5 - Determining if a Molecule Is Polar Is SCl2 a polar...
Ch. 5 - Based on the Lewis structures for hydrogen and...Ch. 5 - Prob. 2SCCh. 5 - Prob. 3SCCh. 5 - Prob. 4SCCh. 5 - Which one of the following bonds is polar? a. a...Ch. 5 - Prob. 6SCCh. 5 - Why is salt, NaCl, relatively harmless even though...Ch. 5 - If sodium is dropped into water, a loud fizzing...Ch. 5 - Explain ionic bonding according to Lewis theory.Ch. 5 - Prob. 4ECh. 5 - Prob. 5ECh. 5 - Prob. 6ECh. 5 - Draw electron dot structures for the following...Ch. 5 - Explain VSEPR theory. According to this theory,...Ch. 5 - Prob. 9ECh. 5 - Prob. 10ECh. 5 - In what ways is water unique? What about the water...Ch. 5 - What is the difference between a polar and a...Ch. 5 - Why do polar molecules have a greater tendency to...Ch. 5 - Prob. 14ECh. 5 - Lewis Structures for Atoms Draw Lewis structures...Ch. 5 - Draw Lewis structures for each of the following...Ch. 5 - Ionic Lewis Structures Draw a Lewis structure for...Ch. 5 - Draw a Lewis structure for each of the following...Ch. 5 - Draw a Lewis structure for each of the following...Ch. 5 - Draw a Lewis structure for each of the following...Ch. 5 - Covalent Lewis Structures Draw a Lewis structure...Ch. 5 - Draw a Lewis structure for each molecular...Ch. 5 - General Lewis Structures Determine whether each...Ch. 5 - Determine whether each compound is ionic or...Ch. 5 - What is wrong with each Lewis structure? Fix the...Ch. 5 - What is wrong with each Lewis structure? Fix the...Ch. 5 - Predicting the Shapes of Molecules Use VSEPR...Ch. 5 - Use VSEPR theory to determine the geometry of the...Ch. 5 - Draw a Lewis structure and use VSEPR theory to...Ch. 5 - Draw a Lewis structure and use VSEPR theory to...Ch. 5 - CF2Cl2 is a chlorofluorocarbon implicated in ozone...Ch. 5 - Chlorofluorocarbons have been banned because they...Ch. 5 - Determining Molecular Polarity Determine whether...Ch. 5 - Determine whether each molecule is polar:...Ch. 5 - Determine whether each molecule is polar:...Ch. 5 - Determine whether each molecule is polar:...Ch. 5 - Explain why water would be a gas at room...Ch. 5 - Prob. 38ECh. 5 - Prob. 39ECh. 5 - One of the observations that led G. N. Lewis to...Ch. 5 - G. N. Lewis developed a model for chemical bonding...Ch. 5 - The opening quote of this chapter states that Man...Ch. 5 - Draw a Lewis structure of the H2 molecule. If you...Ch. 5 - Prob. 44ECh. 5 - The Lewis structures for CH4,N2,andCO2, along with...Ch. 5 - CH3COCH3 (acetone) is a common laboratory solvent...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- escribe the type of bonding that exists in the Cl2(g)molecule. How does this type of bonding differ from that found in the HCl(g)molecule? How is it similar?arrow_forwardBond Enthalpy When atoms of the hypothetical element X are placed together, they rapidly undergo reaction to form the X2 molecule: X(g)+X(g)X2(g) a Would you predict that this reaction is exothermic or endothermic? Explain. b Is the bond enthalpy of X2 a positive or a negative quantity? Why? c Suppose H for the reaction is 500 kJ/mol. Estimate the bond enthalpy of the X2 molecule. d Another hypothetical molecular compound, Y2(g), has a bond enthalpy of 750 kJ/mol, and the molecular compound XY(g) has a bond enthalpy of 1500 kJ/mol. Using bond enthalpy information, calculate H for the following reaction. X2(g)+Y2(g)2XY(g) e Given the following information, as well as the information previously presented, predict whether or not the hypothetical ionic compound AX is likely to form. In this compound, A forms the A+ cation, and X forms the X anion. Be sure to justify your answer. Reaction: A(g)+12X2(g)AX(s)The first ionization energy of A(g) is 400 kJ/mol. The electron affinity of X(g) is 525 kJ/mol. The lattice energy of AX(s) is 100 kJ/mol. f If you predicted that no ionic compound would form from the reaction in Part e, what minimum amount of AX(s) lattice energy might lead to compound formation?arrow_forwardThe element vibranium (Vb) reacts with pandemonium (Pn) to generate a covalent PnVb4 molecule. If a pandemonium atom has 8 valence electrons and each vibranium atom has 7 valence electrons, draw the Lewis structure of PbVb4. What is the molecular geometry of the PbVb4 molecule? Pn is the central atom.arrow_forward
- Bond dissociation energies are often measured by determining the wavelength of ultraviolet photons needed to cause a covalent bond between two atoms to break. A single photon absorbed by a molecule will cause the bond to break between two atoms. If a bond dissociation energy is 450 kJ/mole, what wavelength of photon, in nm, will cause the bond to break?arrow_forwardDepending on the protein under study, the bond angle of a drug molecule can become critical to successfully deactivating a viral protein. For this reason, chemists are frequently concerned with the 3D shape of their molecules and their bond angles. The oxygen atom shown in the structure has a tetrahedral electronic geometry, meaning we would predict that it would have 109.5° bond angles. However, the actual structure, the bond angles are smaller than 109.5°. Explain why this compression occurs. Make sure to discuss what’s happening around/what groups are present around the oxygen atom.arrow_forwardStep 1 – Write the Lewis structure from the molecular formula.Step 2 – Assign an electron-group arrangement by counting all electron groups (bonding plus nonbonding) around the central atom (or around each centralatom, if more than one central atom in structure).Step 3 – Predict the ideal bond angle from the electron-group arrangement and the effect of any deviation caused by lone pairs or double bonds.Step 4 – Name the molecular shape by counting bonding groups and nonbonding groups separately.Step 5 – Predict whether the molecule is polar or nonpolarStep 6 – Describe the hybridization around the central atom and identify the total number of σ and π bonds in the structurearrow_forward
- Please answer question 1 part Barrow_forwardwhat is resonance hybrid in chemistry? give an example.arrow_forwardMany free radicals combine to form molecules that do not contain any unpaired electrons. The driving force for the radical-radical combination reaction is the formation of a new electron-pair bond. Consider the chemical equation. N(g)+NO(g) NNO(g) Write Lewis formulas for the reactant and product species in the chemical equation. Include nonbonding electrons.arrow_forward
- In chemical reactions, heat is converted into chemical energy (the potential energy stored in chemical bonds) or vice versa. Bond energy is the energy required to break one mole of the bond in the gas phase. Since it takes energy to break a bond, bond energies are always positive. Conversely, energy is released when bonds are formed. Thus, the enthalpy change for a reaction can be approximated from Part A Calculate the bond energy per mole for breaking all the bonds in methane, CH4. ΔΗ Σ(ΔΗ breaking) + Σ(ΔΗ forming) Express your answer to four significant figures and include the appropriate units. where H represents bond energies for the breaking (positive bond energy) or forming (negative bond energy) of a bond and Hrxn represents the overall enthalpy for the • View Available Hint(s) reaction. Use the table to answer questions about bond energies. HẢ Bond energy Bond (kJ/mol ) Value Units AHCH, = C-C 347 C=C 611 Submit Сн 414 C-O 360 Part B C=OinCO2 799 O-0 142 Calculate the bond…arrow_forwardCarbon-carbon bonds form the “backbone” of nearly every organic and biological molecule. The average bond energy of the C¬C bond is 347 kJ/mol. Calculate the frequency and wavelength of the least energetic photon that can break an average C¬C bond. In what region of the electromagnetic spectrum is this radiation?arrow_forwardTHIS is the equation N2H4 + O2 → N2 + H2O PLEASE HELP AND LOOK AT THE PICTURE FOR DATA PLEASE HELP! I REALLY NEED HELP BECAUSE MY TEACHER HASENT TAUGHT ME HOW TO DO THIS PLEASE HELP!!!!! Balance the equation (if not already balanced) Draw the models of the molecules in the equation, using Lewis structures, ball and stick models or something else that represents each of the atoms and how they are connected. Identify bonds being formed or broken. Use bond energy values from below to Calculate the overall energy of the reaction. Determine if the reaction is exothermic or endothermic. Draw a potential energy diagram showing the ∆H, reactants and products. Create one example of mass (g) to mass (g) stoichiometry problem.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Types of bonds; Author: Edspira;https://www.youtube.com/watch?v=Jj0V01Arebk;License: Standard YouTube License, CC-BY