Concept explainers
Two blocks of masses m1 and m2, are placed on a table in contact with each other as discussed in Example 5.7 and shown in Figure 5.13a. The coefficient of kinetic friction between the block of mass m1 and the table is μ1, and that between the block of mass m2 and the table is μ2. A horizontal force of magnitude F is applied to the block of mass m1. We wish to find P, the magnitude of the contact force between the blocks. (a) Draw diagrams showing the forces for each block. (b) What is the net force on the system of two blocks? (c) What is the net force acting on m1? (d) What is the net force acting on m2? (e) Write Newton’s second law in the x direction for each block. (f) Solve the two equations in two unknowns for the acceleration a of the blocks in terms of the masses, the applied force F, the coefficients of friction, and g. (g) Find the magnitude P of the contact force between the blocks in terms of the same quantities.
(a)
The free body diagram of each block with forces.
The free body diagram of an object represents the direction and magnitude of forces acting on the body.
Explanation of Solution
The mass of block
The free body diagram of the book is given below.
Figure (1)
The sum of all vertical forces is zero because the block moves on a horizontal surface. So the vertical acceleration,
Write the net force in the y-direction for mass
Here,
Write the net force in the y-direction for mass
Here,
Write the equation for kinetic friction for block
Here,
Write the equation for kinetic friction for block
Here,
In the figure,
Conclusion:
Therefore, the free body diagram of each block to show the forces is given in figure I.
(b)
The net force on the system of two blocks.
Answer to Problem 39AP
The net force on the system of two blocks is the external force applied minus the frictional force.
Explanation of Solution
Write the expression for the net force in x-direction for the system of two blocks from the figure I,
Here,
Conclusion:
Therefore, the net force on the system of two blocks is the external force applied minus the frictional force.
(c)
The net force acting on
Answer to Problem 39AP
The net force acting on
Explanation of Solution
Write the expression for the net force in x-direction for the system of two blocks from the figure I,
Here,
Conclusion:
Therefore, the net force acting on
(d)
The net force acting on
Answer to Problem 39AP
The net force acting on
Explanation of Solution
Write the expression for the net force in x-direction for the system of two blocks from the figure I,
Here,
Conclusion:
Therefore, the net force acting on
(e)
The Newton’s second law in the
Answer to Problem 39AP
The Newton’s second law in the
Explanation of Solution
The block has on a horizontal acceleration
Write the Newton’s second law for block
Substitute
Substitute
Write the Newton’s second law for block
Substitute
Substitute
Conclusion:
Therefore, the Newton’s second law in the
(f)
The acceleration of the blocks.
Answer to Problem 39AP
The acceleration of the blocks is
Explanation of Solution
Write the Newton’s second law is for block
Write the Newton’s second law is for block
Conclusion:
Add the equation (I) and equation (II) and solve for
Therefore, the acceleration of the blocks is
(g)
The magnitude of the contact force between the blocks in terms of acceleration, mass, applied force and the friction coefficient.
Answer to Problem 39AP
The magnitude
Explanation of Solution
Recall the equation (II).
Substitute
Conclusion:
Therefore, the magnitude
Want to see more full solutions like this?
Chapter 5 Solutions
PHYSICS:F/SCI.+ENGRS.,V.1
- Checkpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forwardWhat is integrated science. What is fractional distillation What is simple distillationarrow_forward19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forward
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning