Fundamentals Of Thermal-fluid Sciences In Si Units
Fundamentals Of Thermal-fluid Sciences In Si Units
5th Edition
ISBN: 9789814720953
Author: Yunus Cengel, Robert Turner, John Cimbala
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 38P
To determine

The heat transferred and the work produced during the process.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given:

Initial pressure of steam is 75 kPa.

Initial quality is 8%.

Initial volume is 2 m3.

Final volume is 5 m3.

Final pressure of the steam is 225 kPa.

Calculation:

From the Table A-5, to obtain the value of the specific volume of saturated liquid is vf, the specific volume of saturated vapour is vg, the specific internal energy of saturated liquid is uf, the specific internal energy change upon vaporization is vfg at initial pressure of 250kPa.

  vf1=0.001037m3/kgvg1=2.2172m3/kguf1=384.36kJ/kgufg1=2111.8kJ/kg

The specific volume of the spring-loaded piston cylinder device is,

  v1=vf1+xvfg1

  v1=(0.001037m3/kg)+(0.08)×(2.2172m3/kg0.001037m3/kg)=(0.001037m3/kg)+(0.08)×(2.216163m3/kg)=0.1783m3/kg

The initial specific internal energy of the spring-loaded piston cylinder device is,

  u1=uf1+xufg1

  u1=(384.36kJ/kg)+(0.08)×(2111.8kJ/kg)=(384.36kJ/kg)+(168.94kJ/kg)=553.30kJ/kg

The mass of the system is,

  m=ν1v1

  m=2m30.1783m3/kg=11.217kg

Determine the final specific volume of the piston cylinder device.

  v2=V2m

  v2=(5m3)(11.217kg)=0.44575m3/kg0.4458m3/kg

From the Table A-5, to obtain the value of the specific volume of saturated liquid is vf, the specific volume of saturated vapour is vg, the specific internal energy of saturated liquid is uf, the specific internal energy change upon vaporization is vfg at final pressure of 225kPa.

  vf2=0.001064m3/kgvg2=0.79329m3/kguf2=520.47kJ/kgufg2=2012.7kJ/kg

Determine the quality of final state for the spring-loaded piston-cylinder device.

  x2=v2vf2(vg2vf2)

  x2=(0.4458m3/kg)(0.001064m3/kg)(0.79329m3/kg0.001064m3/kg)=(0.444736m3/kg)(0.792226m3/kg)=0.561375

The final specific internal energy of the spring-loaded piston cylinder device is,

  u2=uf2+x2ufg2

  u2=(520.47kJ/kg)+(0.561375)×(2012.7kJ/kg)=(520.47kJ/kg)+(1129.75kJ/kg)=1650.35kJ/kg1650.4kJ/kg

The work done during the constant pressure process is,

  Wb,out=12Pdν=P1+P22(ν2ν1)

  Wb,out=(75+225)kPa2(52)m3=300kPa2×3m3=150kPa×3m3=450kJ

Thus, the work produced during the process is 450kJ.

The energy balance equation is,

  EinEout=ΔEsystemQinWb,out=ΔUQin=m(u2u1)+Wb,out

  Qin=(11.217kg)(1650.4kJ/kg553.30kJ/kg)+450kJ=(11.217kg)(1097.1kJ/kg)+450kJ=12756kJ

Thus, the heat transferred during the process is 12,756kJ.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Question 22: The superheated steam powers a steam turbine for the production of electrical power. The steam expands in the turbine and at an intermediate expansion pressure (0.1 MPa) a fraction is extracted for a regeneration process in a surface regenerator. The turbine has an efficiency of 90%. It is requested: Define the Power Plant Schematic Analyze the steam power system considering the steam generator system in the attached figure Determine the electrical power generated and the thermal efficiency of the plant Perform an analysis on the power generated and thermal efficiency considering a variation in the steam fractions removed for regeneration ##Data: The steam generator uses biomass from coconut shells to produce 4.5 tons/h of superheated steam; The feedwater returns to the condenser at a temperature of 45°C (point A); Monitoring of the operating conditions in the steam generator indicates that the products of combustion leave the system (point B) at a temperature of 500°C;…
This is an old practice exam question.
Steam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat Rankine cycle at 700 psia and 900°F and leaves as saturated vapor. Steam is then reheated to 800°F before it expands to a pressure of 1 psia. Heat is transferred to the steam in the boiler at a rate of 6 × 104 Btu/s. Steam is cooled in the condenser by the cooling water from a nearby river, which enters the condenser at 45°F. Use steam tables.   NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.   Determine the pressure at which reheating takes place. Use steam tables. Find: The reheat pressure is  psia. (P4)Find thermal efficiencyFind m dot

Chapter 5 Solutions

Fundamentals Of Thermal-fluid Sciences In Si Units

Ch. 5 - Prob. 11PCh. 5 - Prob. 13PCh. 5 - Prob. 14PCh. 5 - During an expansion process, the pressure of a gas...Ch. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - Prob. 20PCh. 5 - 0.75-kg water that is initially at 0.5 MPa and 30...Ch. 5 - Prob. 22PCh. 5 - A piston–cylinder device contains 50 kg of water...Ch. 5 - Reconsider Prob. 5–23. Using an appropriate...Ch. 5 - Prob. 25PCh. 5 - A closed system undergoes a process in which there...Ch. 5 - Prob. 27PCh. 5 - Prob. 28PCh. 5 - Prob. 29PCh. 5 - Prob. 30PCh. 5 - A fixed mass of saturated water vapor at 400 kPa...Ch. 5 - Prob. 32PCh. 5 - Prob. 33PCh. 5 - Prob. 34PCh. 5 - Prob. 36PCh. 5 - A 40-L electrical radiator containing heating oil...Ch. 5 - Prob. 38PCh. 5 - Saturated R-134a vapor at 100°F is condensed at...Ch. 5 - Prob. 40PCh. 5 - Prob. 41PCh. 5 - Prob. 42PCh. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - Prob. 45PCh. 5 - Prob. 46PCh. 5 - Prob. 47PCh. 5 - Prob. 48PCh. 5 - Prob. 49PCh. 5 - Prob. 50PCh. 5 - Prob. 51PCh. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - Is it possible to compress an ideal gas...Ch. 5 - Prob. 56PCh. 5 - Prob. 57PCh. 5 - A rigid tank contains 10 lbm of air at 30 psia and...Ch. 5 - Prob. 59PCh. 5 - Prob. 60PCh. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Prob. 63PCh. 5 - Prob. 64PCh. 5 - Prob. 65PCh. 5 - Prob. 66PCh. 5 - Prob. 67PCh. 5 - Air is contained in a variable-load...Ch. 5 - A mass of 15 kg of air in a piston–cylinder device...Ch. 5 - Prob. 70PCh. 5 - Prob. 72PCh. 5 - Prob. 73PCh. 5 - Air is contained in a cylinder device fitted with...Ch. 5 - Air is contained in a piston–cylinder device at...Ch. 5 - Prob. 76PCh. 5 - Prob. 77PCh. 5 - Prob. 78PCh. 5 - Prob. 79PCh. 5 - Prob. 80PCh. 5 - Prob. 81PCh. 5 - Prob. 82PCh. 5 - Prob. 83PCh. 5 - Prob. 85PCh. 5 - Prob. 86PCh. 5 - Repeat Prob. 5–86 for aluminum balls. 5-86. In a...Ch. 5 - Prob. 88RQCh. 5 - Prob. 89RQCh. 5 - Air in the amount of 2 lbm is contained in a...Ch. 5 - Air is expanded in a polytropic process with n =...Ch. 5 - Nitrogen at 100 kPa and 25°C in a rigid vessel is...Ch. 5 - A well-insulated rigid vessel contains 3 kg of...Ch. 5 - In order to cool 1 ton of water at 20°C in an...Ch. 5 - Prob. 95RQCh. 5 - Prob. 96RQCh. 5 - Saturated water vapor at 200°C is condensed to a...Ch. 5 - A piston–cylinder device contains 0.8 kg of an...Ch. 5 - A piston–cylinder device contains helium gas...Ch. 5 - Prob. 100RQCh. 5 - Prob. 101RQCh. 5 - Prob. 102RQCh. 5 - Prob. 103RQCh. 5 - Prob. 104RQCh. 5 - Prob. 105RQCh. 5 - Prob. 106RQCh. 5 - A 68-kg man whose average body temperature is 39°C...Ch. 5 - An insulated rigid tank initially contains 1.4-kg...Ch. 5 - Prob. 109RQCh. 5 - Prob. 111RQCh. 5 - Prob. 112RQCh. 5 - Prob. 114RQCh. 5 - Prob. 115RQCh. 5 - An insulated piston–cylinder device initially...Ch. 5 - Prob. 118RQCh. 5 - Prob. 119RQCh. 5 - Prob. 120RQ
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Robot Revolution: The New Age of Manufacturing | Moving Upstream; Author: Wall Street Journal;https://www.youtube.com/watch?v=HX6M4QunVmA;License: Standard Youtube License