(a)
The final pressure and quality of the piston-cylinder device.
(a)

Explanation of Solution
Given:
The mass of the steam
The pressure of the steam
The change in temperature
The final temperature of the steam
Calculation:
Write the unit conversion pressure from MPa to kPa for piston-cylinder device.
From the Table A-5 “Saturated water-Pressure table”, obtain the value of saturated temperature at 3500 kPa pressure as
Determine the state 1 temperature of the piston-cylinder device.
Here, the saturated temperature at 3500 kPa is
Substitute
From the Table A-4 through A-6 “Saturated water”, obtain the value of steam at various states for piston-cylinder device.
At state 1 pressure and temperature of steam as
At state 1-2 pressure and quality of state of steam as
At state 2-3 specific volume and temperature of steam as
Thus, the final pressure of the piston-cylinder device is
(b)
The boundary work done of the piston-cylinder device.
(b)

Explanation of Solution
Write the expression for the energy balance equation.
Here, the total energy entering the system is
Simplify Equation (I) and write energy balance relation of piston-cylinder device.
Here, the work to be done into the system is
Simplify the Equation (III), write energy balance relation when the piston first hits the stops state(1-2).
Here, the mass of the piston-cylinder device is
Similarly the Equation (IV), when the piston first hits and the final state(1-3).
Here, the mass of the piston-cylinder device is
Substitute 0 for
Here, the mass of piston-cylinder device is
Substitute
Thus, the boundary work done of the piston-cylinder device is
(c)
The amount of heat transfer when the piston first hits the stops.
(c)

Explanation of Solution
Substitute
Thus, the amount of heat transfer when the piston first hits the stops is
(d)
The total amount heat transfer in the piston-cylinder device.
(d)

Explanation of Solution
Substitute
Thus, the total amount heat transfer in the piston-cylinder device is
Want to see more full solutions like this?
Chapter 5 Solutions
Fundamentals Of Thermal-fluid Sciences In Si Units
- (read image) (answer given)arrow_forward11-5. Compute all the dimensional changes for the steel bar when subjected to the loads shown. The proportional limit of the steel is 230 MPa. 265 kN 100 mm 600 kN 25 mm thickness X Z 600 kN 450 mm E=207×103 MPa; μ= 0.25 265 kNarrow_forwardT₁ F Rd = 0.2 m md = 2 kg T₂ Tz1 Rc = 0.4 m mc = 5 kg m = 3 kgarrow_forward
- 2. Find a basis of solutions by the Frobenius method. Try to identify the series as expansions of known functions. (x + 2)²y" + (x + 2)y' - y = 0 ; Hint: Let: z = x+2arrow_forward1. Find a power series solution in powers of x. y" - y' + x²y = 0arrow_forward3. Find a basis of solutions by the Frobenius method. Try to identify the series as expansions of known functions. 8x2y" +10xy' + (x 1)y = 0 -arrow_forward
- Hello I was going over the solution for this probem and I'm a bit confused on the last part. Can you please explain to me 1^4 was used for the Co of the tubular cross section? Thank you!arrow_forwardBlood (HD = 0.45 in large diameter tubes) is forced through hollow fiber tubes that are 20 µm in diameter.Equating the volumetric flowrate expressions from (1) assuming marginal zone theory and (2) using an apparentviscosity for the blood, estimate the marginal zone thickness at this diameter. The viscosity of plasma is 1.2 cParrow_forwardQ2: Find the shear load on bolt A for the connection shown in Figure 2. Dimensions are in mm Fig. 2 24 0-0 0-0 A 180kN (10 Markarrow_forward
- determine the direction and magnitude of angular velocity ω3 of link CD in the four-bar linkage using the relative velocity graphical methodarrow_forwardFour-bar linkage mechanism, AB=40mm, BC=60mm, CD=70mm, AD=80mm, =60°, w1=10rad/s. Determine the direction and magnitude of w3 using relative motion graphical method. A B 2 3 77777 477777arrow_forwardFour-bar linkage mechanism, AB=40mm, BC=60mm, CD=70mm, AD=80mm, =60°, w1=10rad/s. Determine the direction and magnitude of w3 using relative motion graphical method. A B 2 3 77777 477777arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





