The Solar System
10th Edition
ISBN: 9781337672252
Author: The Solar System
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 31RQ
To determine
The change in orbital speed and
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At apogee, the center of the moon is 406,395 km from the center of Earth and at perigee, the moon is 357,643 km from the center of Earth. What is the orbital speed of the moon at
perigee and at apogee? The mass of Earth is 5.98 x 1024 kg.
speed at perigee|
km/s
speed at apogee
m/s
eBook
Universal Gravitational Constant, G=6,6742867E-11 m3 kg / s2(Note that the exponent is negative)Radius of Earth, RE: 6,3781366E+06 mMass of Earth, ME: 5,9721426E+24 kg
Two celestial bodies whose masses are m1 and m2 are revolving around their common center of mass and the distance between them is L. Assuming that they are both point masses, Find the angular speed, tangential speeds of the masses m1 and m2, and period of the motion.
m1=7,27210x10^12kg
m2=3,85280x10^11kg
L=6,16500x10^8m
The orbital period of the Earth and Mars are Pg = 365.26 d and P
respectively. Assuming circular orbits, the synodic period P, for two planets to
be at the same angular position from the Sun can be found using the equation
1
= 686.97 d,
%3D
Pe Pe
a) The last opposition of Mars occurred on 13 Oct 2020. Using the information
above, calculate the interval between two consecutive Martian oppositions,
and estimate the date of its next opposition.
b) It is said that Mars at oppositions near its perihelion occur roughly once every
15 years, with the last event occurring on 27 Jul 2018. Using the synodie
period derived, find a more accurate interval, and estimate the date for the
next time this event occurs.
c) The actual dates for the next Martian opposition and opposition at perihelion
are 8 Dec 2022 and 15 Sep 2035, respectively. State two reasons why your
estimations may have differed from these dates.
In stage 10 of the evolution of a Sun-like star, helium fusion occurs. Write down
the…
Chapter 5 Solutions
The Solar System
Ch. 5 - Prob. 1RQCh. 5 - Today, what do we call the Aristotelean violent...Ch. 5 - Which of Keplers or Newtons laws best describes...Ch. 5 - Prob. 4RQCh. 5 - Prob. 5RQCh. 5 - If you drop a feather and a steel hammer at the...Ch. 5 - What is the difference between mass and weight?
Ch. 5 - Prob. 8RQCh. 5 - An astronaut working in space near the...Ch. 5 - Prob. 10RQ
Ch. 5 - A car is on a circular off ramp of an interstate...Ch. 5 - Prob. 12RQCh. 5 - Prob. 13RQCh. 5 - An astronaut is in space with a baseball and a...Ch. 5 - Prob. 15RQCh. 5 - Prob. 16RQCh. 5 - Why did Newton conclude that some force had to...Ch. 5 - Why did Newton conclude that gravity has to be...Ch. 5 - Prob. 19RQCh. 5 - Prob. 20RQCh. 5 - Prob. 21RQCh. 5 - You are sitting next to a person who has twice as...Ch. 5 - Prob. 23RQCh. 5 - Why cant a spacecraft go beyond Earths gravity?Ch. 5 - Prob. 25RQCh. 5 - Balance a pencil lengthwise on the side of your...Ch. 5 - Prob. 27RQCh. 5 - Why can’t you leave Earth’s gravitational field...Ch. 5 - Prob. 29RQCh. 5 -
How do planets orbiting the Sun and skaters doing...Ch. 5 - Prob. 31RQCh. 5 - If you hold this textbook out at shoulder height...Ch. 5 - Today at the beach you see the highest of all high...Ch. 5 - Why is the period of an open orbit undefined?
Ch. 5 - In what conditions do Newtons laws of motion and...Ch. 5 - Prob. 36RQCh. 5 - Prob. 37RQCh. 5 - Prob. 38RQCh. 5 - How is gravity related to acceleration? Are all...Ch. 5 - Prob. 40RQCh. 5 - Prob. 41RQCh. 5 - Prob. 42RQCh. 5 - An astronomy textbook is to be dropped from a tall...Ch. 5 - Compared to the strength of Earth’s gravity at its...Ch. 5 - Compare the force of gravity on a 1 kg mass on the...Ch. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - If a small lead ball falls from a high tower on...Ch. 5 - What is the circular velocity of an Earth...Ch. 5 - What is the circular velocity of an Earth...Ch. 5 - Prob. 9PCh. 5 - Describe the shape of the orbit followed by the...Ch. 5 - Prob. 11PCh. 5 - What is the orbital period of a satellite orbiting...Ch. 5 - What would be the escape velocity at the surface...Ch. 5 - Prob. 14PCh. 5 - A moon of Jupiter takes 1.8 days to orbit at a...Ch. 5 - Prob. 1SPCh. 5 - Prob. 2SPCh. 5 - Prob. 1LLCh. 5 - Prob. 2LLCh. 5 - Why is it a little bit misleading to say that this...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Model the Moons orbit around the Earth as an ellipse with the Earth at one focus. The Moons farthest distance (apogee) from the center of the Earth is rA = 4.05 108 m, and its closest distance (perigee) is rP = 3.63 108 m. a. Calculate the semimajor axis of the Moons orbit. b. How far is the Earth from the center of the Moons elliptical orbit? c. Use a scale such as 1 cm 108 m to sketch the EarthMoon system at apogee and at perigee and the Moons orbit. (The semiminor axis of the Moons orbit is roughly b = 3.84 108 m.)arrow_forwardExplain briefly the difference between apogee and perigee as applied to Highly Elliptical Orbit.arrow_forwardCan I please get some help with the key concepts and principles, please and thank you!arrow_forward
- According to Lunar Laser Ranging experiment the average distance LM from the Earth to the Moon is approximately 3.89 x 105 km. The Moon orbits the Earth and completes one revolution relative to the stars in approximately 27.5 days (a sidereal month). Calculate mass of the Earth Me. Give the answer in 1024 kg. Answer: Choose...arrow_forwardThe following figure shows two satellites in Earth orbits: Satellite A is in a circular orbit with an altitude of 9,622 km, while Satellite B is in an elliptical orbit with an apogee altitude of 9,622 km. At the instant shown in Figure P2, Satellite B is passing through the apogee while Satellite A is ahead of Satellite B with an angular separation of 120 deg. Determine the perigee altitude of the elliptical orbit so that Satellites A and B occupy the same radial position when Satellite A firstly arrives the apogee point (in other words, Satellites A and B perform a rendezvous maneuver at apogee of satellite B).arrow_forwardAn exploding star: A planet of mass m is in a circular orbit about a star of mass M at an initial distance of r. The non-rotating star then explodes and ejects half of its mass radially outward in a symmetric fashion with none of its ejecta hitting the planet. After the star's explosion find the new radius of the planet about the stararrow_forward
- Question-4) A satellite is moving in an elliptic orbit with apogee and perigee at an altitude of 2000 km and 500 km, respectively. The orbital speed of the satellite at perigee is a) 9.36 km/s b) 7.978 km/s c) 5.32 km/s d) 8.22 km/s This one is a MCQ and is a 3 part question. Other parts are attached as an image. Thanks.arrow_forwardKepler’s Law relates the period T ( in a sec) of a satellite to the distance from the center of the earth r (in m) to some physical constants as shown: T2 = (2π/ G ME) r3 Where G = Universal Constant of Gravitation and ME is the mass of the earth. A stationary satellite is one that circles the earth in a circular orbit but stays exactly above the same spot on the earth. Calculate the distance above the earth in m for this “geo-synchronous satellite” to orbit, then convert that height to miles.arrow_forwardA landing craft with mass M is in a circular orbit a distance d above the surface of a planet. The period ofthe orbit is T. The astronauts in the landing craft measure the diameter of the planet to be D. The landing craft sets down at the north pole of the planet. a)What is the weight of a person of mass m as they step out onto the plant’s surface? b)Suppose days on this planet last t seconds (i.e. the planet rotates about its axis once every t seconds).Write an expression for the astronaut’s perceived weight at the equator in terms of their weight at the north pole. (Hint: think about centripetal force)arrow_forward
- Please find mass of sun and speed of planet..arrow_forwardIf we were to design a space station for long term habitation by humans, we will need to find some way to replicate the force of gravity on the station. Without this artificial gravity, human growth would be stunted and biological functions will break down.One method of creating artificial gravity is by designing your cylindrically shaped and having it rotate. Human beings can then walk on the inside of the outer edge of the cylinder. (See the diagram below)Let's assume that your space station has a diameter of D = 2535 m such that it is large enough that the curvature is not noticeable by the inhabitants.How many minutes will it take for the space station to spin one complete revolution in order for the artificial gravity to be equivalent to that of earth?arrow_forwardIf we were to design a space station for long term habitation by humans, we will need to find some way to replicate the force of gravity on the station. Without this artificial gravity, human growth would be stunted and biological functions will break down. One method of creating artificial gravity is by designing your cylindrically shaped and having it rotate. Human beings can then walk on the inside of the outer edge of the cylinder. (See the diagram below) Let's assume that your space station has a diameter of D = 2535 m such that it is large enough that the curvature is not noticeable by the inhabitants. How many minutes will it take for the space station to spin one complete revolution in order for the artificial gravity to be equivalent to that of earth? IMM5740 2-UJ6ODS.pdf Open file search 112 pause breo 18 19 F10 LEI 14 E38 & 9 R T Y K 00 16 5arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY